Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1+2+3+...+98+99
=(1+99)+(2+98)+...+(50+50)
=100+100+...+100
=100*25(Tính số số hạng chia 2)
=2 500
\(\frac{4^{20}.20^{10}}{80^{10}.5^7}\)\(=\frac{4^{10}.4^{10}.20^{10}}{4^{10}.20^{10}.5^7}\)\(=\frac{4^{10}}{5^7}\)
\(\frac{9^{10}.6^3}{36^7.3^2}\)\(=\frac{3^5.3^2.3^{10}.6^3}{6^3.6^4.6^7.3^2}\)\(=\frac{3^{15}}{6^{11}}\)\(=\frac{3^{11}.3^4}{3^{11}.2^{11}}\)\(=\frac{3^4}{2^{11}}\)
C=1+3+5+...+999
=(1+999)+(3+997)+...+(499+501)
=1000+1000+...+1000(250 cặp)
=250.1000
=250000
Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)
theo lớp 7 chắc vậy
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)
\(\left(\dfrac{1}{7}\right)^7\cdot7^7\)
\(=\left(\dfrac{1}{7}\cdot7\right)^7\)
\(=\left(\dfrac{7}{7}\right)^7\)
\(=1^7\)
\(=1\)
_______
\(\dfrac{3^7}{\left(0,375\right)^7}\)
\(=\left(\dfrac{3}{0,375}\right)^7\)
\(=8^7\)
\(=\left(2^3\right)^7\)
\(=2^{21}\)