Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta phân tích số 2100:
\(2100=23.3.7.52\)
=>Số 2100 chia hết cho các số nguyên tố \(2;3;5;7\)
Vì \(2100=2^2.3.5^5.7\)
nên 2100 chia hết các thừa số nguyên tố là 2;3;5;7
+)Ta có:abcabc=1001abc
+)Ta thấy :1001 chia hết cho:7;11;13;.............
=>abcabc chia hết cho :7;11;13;..............
+)Theo bài ta có :abc là số nguyên tố
=>abc có 2 ước 1 và chính nó
=>abcabc \(⋮\)abc
Vậy abcabc chia hết cho:7;11;13;.............;abc
Chúc bn học tốt
Lan Hương ơi !!! M đố mấy bài này thì bố thằng nào làm nổi toàn câu khó.
T chịu luôn , t không biết.
Trả lời:
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
2>
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố
Với p>3
* Do p nguyên tố nên ko chia hết cho 3
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+1
Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+2
Vậy p=3 là duy nhất
Đặt m là ƯC(2p-1;4p-1)
Theo bài ra ta có:
2p-1 chia hết cho m
4p-1 chia hết cho m
2(2p-1) chia hết cho m
=>
4p-1 chia hết cho m
4p-2 chia hết cho m
=>
4p-1 chia hết cho m
=> (4p-2) - (4p-1) chia hết cho m
=> 1 chia hết cho m
=> m=1
Vậy m=1
3;89
Số nguyên tố là : 3 và 89