Cho hình bình hành ABCD. Gọi M, N là các điểm nằm trên các cạnh AB và CD sao cho AM =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
a. 

$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$ (tính chất hình bình hành)

b.

$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{AD})$

c. 

$\overrightarrow{AN}=\overrightarrow{AC}+\overrightarrow{CN}=\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BA}$

$=\overrightarrow{AB}+\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$

$=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$

11 tháng 1 2023

Ta có M là trung điểm của AC nên Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

          K là trung điểm của BC nên Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

                      Bạn tự vẽ hình minh họa nha :>

11 tháng 1 2023

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.

Ta có  =  =>  = 

 = - = -  = -

Theo quy tắc 3 điểm đối với tổng vec-tơ:

+ =>  =  = ().

AK là trung tuyến thuộc cạnh BC nên

 = 2 => += 2

Từ đây ta có  = + =>  = - - .

BM là trung tuyến thuộc đỉnh B nên:

= 2 => -  + = 2

=>  =  + .

10 tháng 12 2020

E cần gấp achij nào giúp e cho mai e nộp

10 tháng 12 2020

a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=\dfrac{-1}{2}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

b) CG.CAN??

a: \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\overrightarrow{u}-\overrightarrow{v}\)