Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
27 mũ 11 = (3mu3)mũ11=3 mũ33
81 mũ 8 = (3 mũ 4)mũ 8 =3 mũ 32
Vì 3 mũ 33 >3 mũ 32
Vậy 27 mũ 11 > 81 mũ 8
Cho xin k
HOK TỐT
Ta có :
A = 1 + 2 + 2 2 + 2 3 + ... + 2 2016
2A = 2 + 2 2 + 2 3 + 2 4 + .... + 2 2017
2A - A = ( 2 + 2 2 + 2 3 + 2 4 + .... + 2 2017 )
- ( 1 + 2 + 2 2 + 2 3 + ... + 2 2016 )
A = 2 2017 - 1
Vì 2 2017 - 1 < 2 2017
=> A < B
Vậy A < B
\(A=1+=2+2^2+2^3+...+2^{2016}\)
\(2A=2+2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=2+2^2+2^3+2^4+..+2^{2017}-1-2-2^2-2^3-...-2^{2016}\)
\(A=2^{2017}-1\)
VÌ \(2^{2017}-1< 2^{2017}\)
\(=>A< B\)
ĐỀ BÀI CHO HÌNH NHƯ SAI, PHẢI LÀ 2^2017 BẠN NHÉ
\(2^{x+3}.4^2=64\Leftrightarrow2^{x+3}.2^4=64\Leftrightarrow2^{x+7}=2^6\Leftrightarrow x+7=6\Leftrightarrow x=-1\)
A= 82 . 324 = (23)2 . (25)4 = 26.220 = 226
\(B=27^3.9^4.81^2\)
\(=\left(3^3\right)^3.\left(3^2\right)^4.\left(3^4\right)^2\)
\(=3^9.3^8.3^8\)
\(=3^{25}\)
A) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
do \(8^{100}< 9^{100}=>A< B\)
B) \(27^5=\left(3^3\right)^5=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{15}\)
=> \(27^5=243^3\)
1.a. 2S=\(2+2^2+2^3+...+2^{10}\)
2S -S=(\(2+2^2+2^3+...+2^{10}\)) - (1+2+22+...+29)
S= 210 -1
\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)
Ta thấy: \(2^{61}-2< 2^{61}\)
\(\Rightarrow A< B\)
A=2+22+23+...+260
\(\Rightarrow\)2A=22+23+24+...+261
\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)
\(\Rightarrow\)A=261-2
Mà 261-2<261 nên A<B
Vậy A<B