Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a;5^{23}=5\cdot5^{22}< 6\cdot5^{22}\Rightarrow5^{23}< 6\cdot5^{22}\)
\(b;7\cdot2^{13}< 8\cdot2^{13}=2^3\cdot2^{13}=2^{15}\)
\(c;21^{15}=3^{15}\cdot7^{15}>3^{15}\cdot7^{14}=27^5\cdot49^8\)
\(d;199^{20}< 200^{20}=10^{40}\cdot2^{20}< 10^{45}\cdot2^{15}=2000^{15}< 2001^{15}\)
\(e;3^{39}=9^{13}< 11^{13}< 11^{21}\)
\(A=1+2+2^2+2^3+2^4+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+...+2^{51}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+2^4+...+2^{50}\right)\)
\(A=2^{51}-1=2\cdot2^{50}-1\)
Mà \(2^{51}=2\cdot2^{50}\)
=> A < 251
Ta có : C = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 310 + 311
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)
= 40 + 34.40 + 38.40
= 40.(1 + 3 + 32 + 33)
= 10.4.(1 + 3 + 32 + 33) \(⋮\)10
=> \(C⋮10\left(\text{ĐPCM}\right)\)
Có A=20122013+2/20122013-1
=(20122013-1)+3/20122013-1
=20122013-1/20122013-1 + 3/20122013-1
=1 + 3/20122013-1
Có B=20122013/20122013-3
=(20122013-3)+3/20122013-3
=20122013-3/20122013-3 + 3/20122013-3
=1 + 3/20122013-3
Vì 1 + 3/20122013-1>1+20122013-3
nên A>B
Vậy A>B
- Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc
Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)
- Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)
Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)
Các dạng khác làm tương tự!
ta có 3151>3150=(32)75
2225=(23)75
vì 32>23nên (32)75>(23)75 vậy 3150>2225 .mà 3151>3150=>3151>2225
vậy 3151>2225
2^2013 = (2^3)^671 = 8^671
3^1344 = (3^2)^672 = 9^672
vì 8^671<9^672=>2^2013 < 3^1344
\(2^{x+3}.4^2=64\Leftrightarrow2^{x+3}.2^4=64\Leftrightarrow2^{x+7}=2^6\Leftrightarrow x+7=6\Leftrightarrow x=-1\)
2^3 = 8
3^2 = 9
Vì 8 < 9
Nên 2^3 < 3^2
\(2^3\)< \(3^2\)