K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2020

a/ Ta có: \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

\(BD\perp AC\) (hai đường chéo hình thoi)

\(\Rightarrow BD\perp\left(SAC\right)\)

c/ Do \(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow AC=a\)

\(tan\widehat{SCA}=\frac{SA}{AC}=\frac{a\sqrt{3}}{a}=\sqrt{3}\)

\(\Rightarrow\widehat{SCA}=60^0\)

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

10 tháng 4 2018

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) A là hình chiếu của S trên (ABCD) \(\left( {SA \bot \left( {ABCD} \right)} \right)\)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) AC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác SAC vuông tại A có

\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^0}\)

b) \(\left. \begin{array}{l}AC \bot BD\left( {hv\,\,ABCD} \right)\\SA \bot BD\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow \left( {BD,\left( {SAC} \right)} \right) = {90^0}\)

c) Gọi \(AC \cap BD = \left\{ O \right\}\) mà \(BD \bot \left( {SAC} \right)\)

\( \Rightarrow \) O là hình chiếu của B trên (SAC)

S là hình chiếu của S trên (SAC)

\( \Rightarrow \) SO là hình chiếu của SB trên (SAC).

 

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

31 tháng 3 2017

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

1 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).

b) Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ BD ⊥ SC

Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).

Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)

Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).

Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).

Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.

a: (SAB) giao (ABCD)=AB

SA vuông góc AB, SA thuộc (SAB)

AD vuông góc AB, AD thuộc (ABCD)

=>((SAB);(ABCD))=góc SAD=90 độ