Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{16}<\left(\frac{1}{2}\right)^n<\frac{1}{4}\)
\(\left(\frac{1}{2}\right)^4<\left(\frac{1}{2}\right)^n<\left(\frac{1}{2}\right)^2\)
2 < n < 4 => n = 3
2/7<1/n<4/7 \(\Rightarrow\)4/14<4/4n<4/7\(\Rightarrow\)14>4n>7\(\Rightarrow\)\(\hept{\begin{cases}4n=8\\4n=12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=2\\n=3\end{cases}}\)
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\Leftrightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\Rightarrow3,5>n>1,75\Rightarrow n=2;3\).Vậy có 2 giá trị n
Bạn thi violympic hả ?
Ta có: \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{4}{14}< \frac{4}{4n}< \frac{4}{7}\)
\(\Rightarrow14>4n>7\)
\(\Rightarrow4n\in\left\{8;9;10;11;12;13\right\}\)
\(\Rightarrow n\in\left\{2;2,25;2,5;2,75;3;3,25\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{2;3\right\}\)
Vậy \(n\in\left\{2;3\right\}\)
Ta có: \(\frac{2}{7}< \frac{1}{x}< \frac{4}{7}\Leftrightarrow\frac{4}{14}< \frac{1}{x}< \frac{8}{14}\)
Suy ra \(\frac{1}{x}\in\left\{\frac{5}{14};\frac{6}{14};\frac{7}{14}\right\}\Rightarrow x\in\left\{\frac{14}{5};\frac{14}{6};\frac{14}{7}\right\}\Rightarrow x\in\left\{\frac{14}{5};\frac{7}{3};2\right\}\)mà x là số tự nhiên
Nên x=2
Vậy x=2
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(0,\left(285714\right)< \frac{1}{n}< 0,\left(571428\right)\)
\(\Rightarrow n\in\left\{2;3\right\}\)
\(\Rightarrow\left(\frac{1}{2}\right)^4<\left(\frac{1}{2}\right)^n<\left(\frac{1}{2}\right)^2\)
=> 4 < n < 2
=> Không tồn tại n.