\(3^{50}+1\) có là tích của 2 số tự nhiên liên tiếp không?

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Tích của 2 số tự nhiên liên tiếp hoặc là chia hết cho 3, hoặc chia cho 3 dư 2 (bạn tự chứng minh).

Vì số 350 + 1 chia cho 3 dư 1 nên nó không thể là tích của hai số tự nhiên liên tiếp

350 + 1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2

10 tháng 9 2020

Giả sử 350+ là tích 2 số tự nhiên liên tiếp thật.

Gọi số nhỏ hơn là a

Theo đề: \(a\left(a+1\right)=3^{50}+1\Leftrightarrow a^2+a-\left(3^{50}+1\right)=0\)(1)

Phương trình (1) có nghiệm tự nhiên thì  \(\sqrt{\Delta}\)phải là số tự nhiên

---> Khi và chỉ khi \(\Delta\)là số chính phương

Chú ý rằng: Số chính phương chỉ có thể có dạng 3k hoặc 3k+1, k là số tự nhiên

Chứng minh: Với số chia 3 dư 1: \(\left(3n+1\right)^2=9n^2+6n+1=3\left(3n^2+2n\right)+1=3k+1\)

Với số chia 3 dư 2: \(\left(3n+2\right)^2=9n^2+12n+4=3\left(3n^2+4n+1\right)+1=3k+1\)

Với số chia hết cho 3 thì rõ ràng bình lên mang dạng 3k rồi ha.

Xét \(\Delta=1+4\left(3^{50}+1\right)=4.3^{50}+5=3\left(4.3^{49}+1\right)+2=3k+2\)

Vậy \(\Delta\)không là số chính phương (hay có thể khẳng định\(\sqrt{\Delta}\) là vô tỉ lun)

Nên các nghiệm của phương trình (1) không là sô tự nhiên

---> Kết luận: bla bla bla bla bla......

6 tháng 9 2017

ta có 2 số tự nhiên liên tiếp luôn có dạng 2a và 2a+1 (a thuộc N)

=> 2a.(2a+1) là số chẵn

mà \(3^{70+1}\) là số lẻ

=> \(3^{70+1}\) không là tích 2 số tự nhiên liên tiếp

6 tháng 9 2017

\(3^{70+1}\)đúng vì

tích của nó bằng :

\(3^{70^{ }}+3^1=3^{71}\)

28 tháng 3 2018

câu 2 nề

A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)

vậy max A = 1 khi x= -1

28 tháng 3 2018

mình bik câu 1,3 r. Cần câu 2 thôi. Giúp mình với

23 tháng 8 2016

Ta có công thức sau: 
1² + 2² + 3² + .... + n² = [ n(n+1)(2n+1) ]/6 (*) ∀ n ∈ N* 

Chứng minh ( bằng phương pháp quy nạp) 
Với n = 1 thì 1² + 2² + 3² + .... + n² = 1² = 1 
và [ n(n+1)(2n+1) ]/6 = (1.2.3)/6 = 1 
=> (*) đúng với n = 1 

Giả sử (*) đúng với n = k ∈ N*. => ta có:1² + 2² + 3² + .... + k² = [ k(k+1)(2k+1) ]/6 

Ta phải c/m (*) đúng với n = k + 1. Hay ta phải chứng minh 

1² + 2² + 3² + .... + k² + (k+1)² = [ (k+1)(k+2)(2k+3) ] / 6 (chỗ này mình làm tắt) 

Ta có : 1² + 2² + 3² + .... + k² + (k+1)² = [ 1² + 2² + 3² + .... + k² ] + (k+1)² 

= [ k(k+1)(2k+1) ]/6 + (k+1)² = [ k(k+1)(2k+1) + 6(k+1)² ]/6 

= [ (k+1)(2k² + k) + 6(k+1)² ]/6 = [ (k+1)(2k² + k + 6k + 6) ]/6 

= [ (k+1)(2k² + 7k + 6) ]/6 = [ (k+1)(2k² + 4k + 3k + 6) ]/6 

= [ (k+1)(k+2)(2k+3) ]/6. => theo nguyên lý quy nạp thì (*) đúng với ∀ n ∈ N* 

Áp dụng với n = 1974 ta được: 

1² + 2² + 3² + .... + 1974² = ( 1974.1975.3949 )/6 = 2565961475 

Khai căn 2565961475 thì thấy kết quả không phải số nguyên => 2565961475 không phải số chính phương => biểu thức đã cho không phải số chính phương. 

23 tháng 8 2016

Phương pháp quy nạp là phương pháp thế nào bạn? Giải thích rõ giùm mình với. Cảm ơn <3

10 tháng 8 2014

a)

Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)

Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.

b)

350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)

28 tháng 5 2016

số đó ko phải

28 tháng 9 2021

chịu nha

9 tháng 10 2015

Tích của 2 số tự nhiên liên tiếp chia hết cho 3 hoặc chia cho 3 dư 2

Mà 350 + 1 chia cho 3 dư 1 nên không phải là tích của hai số tự nhiên liên tiếp