K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

a) ab.ab=(ab)2

=> ab.ab là số chính phương

b) abc+bac+cab

=100a+10b+c+100b+10c+a+100c+10a+b

=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)

=111a+111b+111c

=111(a+b+c)

=> abc+bca+cab không phải số chính phương.

                     tk mk nha!            

2 tháng 1 2019

ko biết

26 tháng 3 2017

Ta có:

\(\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=100a+10b+c+100b+10c+a+100c+10a+b\)

\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)\)

\(=37.3\left(a+b+c\right)\)

Giả sử \(S\)là số chính phương thì \(S\)phải chứa số \(37\)mủ chẵn

\(\Rightarrow3\left(a+b+c\right)⋮37\)

\(\Rightarrow a+b+c⋮37\)

Điều này không xảy ra vì \(1\le a+b+c\le27\)

Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)

3 tháng 1 2019

A= abc+bca+cab

  =100a+10b+c+100b+10c+a+100c+10a+b

  =(100a+10a+a)+(100b+10b+b)+(100c+10c+c)

  =111a+111b+111c

  =111(a+b+c)

=> A ko phải số chính phương

              nhớ tk mk nha!            

3 tháng 1 2019

uk bban

3 tháng 12 2015

Ta có :

S=abc+bca+cab

suy ra :S= (100a+10b+c) + 9100b+10c+a0 + 9100c+10a+b)

suy ra S= 111a+11b+111c

suy ra S= 111(1+b+c)=37.39 (a+b+c)

Gỉa sử S là số chính phương thì S phải chứa thừa số nguyên tó 37 vs số mũ chẵn nên 

3(a+b+c) chia hết cho 37

suy ra : a+b+c chia hết cho 37

Điều này ko xáy ra vì :1< a+b+c lớn hơn hoặc bằng 27

Vậy S =abc+bca+cab ko hả là só chính phương

3 tháng 12 2015

S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 và 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

tick nha bạn

1 tháng 3 2016

A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để A là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương A