K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

Ta có :

S=abc+bca+cab

suy ra :S= (100a+10b+c) + 9100b+10c+a0 + 9100c+10a+b)

suy ra S= 111a+11b+111c

suy ra S= 111(1+b+c)=37.39 (a+b+c)

Gỉa sử S là số chính phương thì S phải chứa thừa số nguyên tó 37 vs số mũ chẵn nên 

3(a+b+c) chia hết cho 37

suy ra : a+b+c chia hết cho 37

Điều này ko xáy ra vì :1< a+b+c lớn hơn hoặc bằng 27

Vậy S =abc+bca+cab ko hả là só chính phương

3 tháng 12 2015

S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 và 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

tick nha bạn

20 tháng 10 2016

S = abc (ngang) + bca (ngang) + cab (ngang) 

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b 

= 111a + 111b + 111c

= 111.(a + b + c) 

=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c ≠ 111

Nguồn : lấy từ bài Đinh Tuấn Việt

20 tháng 10 2016

S = 111a+111b+111c

= 111(a+b+c)

=37*3*(a+b+c) (37 và 3 là số nguyên tố nên S không thể là số chính phương)

Vậy S không phải là số chính phương

24 tháng 1 2019

S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương

24 tháng 1 2019

lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0

10 tháng 4 2017

Ta có S = abc + bca + cab

<=> S =( 100a + 10b + c)+ ( 100b + 10c + a) + ( 100c + 10a + b )

<=> S = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

<=> S = 111a + 111b + 111c => S = 111( a + b + c ) = 37 . 3 (a + b + c)

Giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên 3(a + b + c) chia hết 37

Suy ra : a+b+c chia hết cho 37

Điều này không xảy ra vì 1 ≤ a + b + c ≤ 27

Vậy S = abc + bca + cab không phải là số chính phương

10 tháng 4 2017

Ta có: S=abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c

=111.(a+b+c)

=3.37.(a+b+c)

Giả sử S là số chính phương thì S phải chứa thừa số 37 với số mũ chẵn

=> 3.(a+b+c) chia hết cho 37

=>(a+b+c) chia hết  cho 37(vì 3 không chia hết cho 37)

Vì 0\(\le\)a,b,c<10

=>0\(\le\)a+b+c\(\le\)27

=> a+b+c không chia hết cho 37

Vậy S=abc+bca+cab không là số chính phương

26 tháng 3 2017

Ta có:

\(\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=100a+10b+c+100b+10c+a+100c+10a+b\)

\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)\)

\(=37.3\left(a+b+c\right)\)

Giả sử \(S\)là số chính phương thì \(S\)phải chứa số \(37\)mủ chẵn

\(\Rightarrow3\left(a+b+c\right)⋮37\)

\(\Rightarrow a+b+c⋮37\)

Điều này không xảy ra vì \(1\le a+b+c\le27\)

Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)

Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)

             \(=a.111+b.111+c.111=\left(a+b+c\right)111\)

Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn

Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)

=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)

Vậy không có a;b;c thỏa mãn hay A không là số chính phương

23 tháng 11 2015

1/số đó là 2304.<Lý luận tự nghĩ>

2/A=abc+cba+bca=(a+b+c).111=(<a+b+c>.3).37

vì a,b.c<9 nên a++b+c<27 suy ra 3.(a+b+c)<81

vì 37 là số nguyên tố nên bắt buộc 3.(a+b+c)=37(để A là SCP)

vậy a+b+c ko là số tự nhiên(vô lý)

Vậy A ko là số chính phương

(mình giải hơi tắt)

tick cho mình nha !

22 tháng 11 2015

trả lời giúp đi mk cần gấp lắm

 

23 tháng 11 2015

ai tích mình lên 10 cái mình tích người đó cả tháng

23 tháng 11 2015

ai tick mk mk **** người đó cả tháng