Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1}{1975}.\frac{2}{1945}-\frac{1}{1975}-\frac{1}{1975}-\frac{1}{1975}.\frac{2}{1975}-\frac{1974}{1975}.\frac{1946}{1945}-\frac{3}{1975.1945}\)
=\(\frac{1}{1975}.\left(\frac{2}{1945}-1-1-\frac{2}{1975}\right)-\frac{1974.1946}{1975.1945}-\frac{3}{1975.1945}\)
=\(\frac{1}{1975}.\left(\frac{2}{1945}-\frac{2}{1975}-2\right)-\frac{1974.1946-3}{1975.1945}\)
Bài 2:
a) \(9^{1945}-2^{1930}\)
Ta có:
\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)
\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)
Vì \(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)
\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)
Chúc bạn học tốt!
b) \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)
\(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)=\left(\frac{x-95}{9}-1\right)\)\(+\left(\frac{x-93}{11}-1\right)\)
\(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)
\(\Leftrightarrow\left(x-104\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)
Mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\ne0\)
\(\Rightarrow x-104=0\)
\(\Leftrightarrow x=104\)
Vậy ....
a) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)\)\(+\left(\frac{x+1969}{69}-1\right)\)
\(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)
\(\Leftrightarrow\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
Mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\)
\(\Rightarrow x+1900=0\)
\(\Leftrightarrow x=-1900\)
Vậy ...
bài 2
\(9\equiv-1\left(mod5\right)\Rightarrow9^{1945}\equiv-1^{1945}\equiv-1\left(mod5\right)\\ \)
\(2^{1930}=4^{965}\)mà \(4\equiv-1\left(mod5\right)\Rightarrow4^{965}\equiv-1^{965}\left(mod5\right)\equiv-1\left(mod5\right)\)
\(\Rightarrow9^{1945}-2^{1930}\equiv-1-\left(-1\right)\left(mod5\right)\equiv0\left(mod5\right)\Rightarrow9^{1945}-2^{1930}⋮5\)
Ta có:
\(\frac{2^9+1945}{2^8+1945}=1+\frac{256}{2^8+1945}\)
\(\frac{2^{10}+1945}{2^9+1945}=1+\frac{512}{2^9+1945}\)
So sánh phần hơn 256/2^8+1945 và 512/2^9+1945.Ta có:
\(\frac{256}{2^8+1945}=\frac{512}{2^9+3890}\)
Vì 2^9+3890 > 2^9+1945 => 512/2^9+1945 > 512/2^9+3890 => \(\frac{2^{10}+1945}{2^9+1945}>\frac{2^9+1945}{2^8+1945}\)