K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

ta có 1/3=10/30

1/21+1/22+...+1/30 có 10 p/số

mà 1/21>1/30

1/22>1/30

....

1/29>1/30

1/30=1/30

=>1/21+..1/30>1/30+....1/30 có 10 phân số 

=>1/21+...1/30>1/3

23 tháng 4 2017

Ta có: \(\frac{1}{21}< \frac{1}{30}\)

\(\frac{1}{22}< \frac{1}{30}\)

......

\(\frac{1}{29}< \frac{1}{30}\)

\(\Rightarrow S< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 p/s)
\(\Rightarrow S< \frac{1}{30}.10=\frac{10}{30}=\frac{1}{3}\)

Vậy S < 1/3

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé

4 tháng 5 2018

Giúp mình với !!!!!!!!!

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

29 tháng 4 2017

Ta có :

\(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{1}{20}\)

\(\Rightarrow D=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy \(D< \frac{1}{2}\)

29 tháng 4 2017

\(D=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Nhận xét: \(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow D< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy D < 1/2

13 tháng 8 2015

\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)

mà \(\frac{1}{5}+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

vậy A < 1/2

a) \(\frac{-3}{7}+\frac{15}{26}-\left(\frac{2}{13}-\frac{3}{7}\right)=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}=\left(\frac{-3}{7}+\frac{3}{7}\right)+\left(\frac{15}{26}-\frac{2}{13}\right)\)

\(=\frac{15-4}{26}=\frac{11}{26}\)

c) \(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}=\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)

\(=\frac{-11}{23}.2-\frac{1}{23}=\frac{-22-1}{23}=\frac{-23}{23}=-1\)