Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=2^{30}+3^{30}+4^{30}>3.\sqrt[3]{2^{30}.3^{30}.4^{30}}=3.\left(2.3.4\right)^{10}=3.24^{10}=VP\)
2 mũ 30=6 mũ 10
3 mũ 30=9 mũ 10
4 mũ 30=12 mũ 10
6 mũ 10 + 9 mũ 10 + 12 mũ 10 =6.9.12 mũ 10 > 3 . 24 mũ 10
**** e nha chị moon
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
\(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}\)
\(=8^{10}.3^{10}.3=3.24^{10}\)
vậy 2^30+3^30+4^30>3.24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
Ta có: 4^30=2^30.2^30=2^30.4^15
3.24^10=3.(3.2^3)^10=2^30.3^11
Ta thấy: 3^11<3^15<4^15 => 4^15>3^11
Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11
=>2^30+3^30+4^30>3.24^10
\(S=1+5+5^2+5^4+...+5^{200}\)
\(\Leftrightarrow5^2S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\left(5^{202}-1\right)\div24\)
a) S = 1 + 52 + 54 + ... + 5200
=> 52S = 52.(1 + 52 + 54 + ... + 5200)
=> 25S = 52 + 54 + 56 + ... + 5202
=> 25S - S = (52 + 54 + 56 + ... + 5202) - (1 + 52 + 54 + ... + 5200)
=> 24S = 5202 - 1
=> S = \(\frac{5^{202}-1}{24}\)