K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

Đề đúng theo như bn sửa: So sánh: \(\sqrt{2}+\sqrt{11}\)\(\sqrt{3}+5\)

Ta có: \(\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=2+4=6\)

\(\sqrt{3}+5>\sqrt{1}+5=1+5=6\)

=> \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

 

25 tháng 10 2016

\(\sqrt{2}\) + \(\sqrt{11}\)\(\sqrt{3}\) + 5

Ta có: \(\sqrt{3}\) + 5 = \(\sqrt{3}\) + \(\sqrt{25}\)

Ta thấy: 2 + 11 < 3 +25 hay \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) + \(\sqrt{25}\)

\(\Rightarrow\) \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) + 5

28 tháng 10 2016

Mít cứ bình phương lên là ok

(2\(\sqrt{7}\))2 =28 (1)

(3\(\sqrt{3}\))2 =27 (2)

vậy (1) > (2)

cứ thế mà làm là hết mít

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

22 tháng 11 2017

Vì 0 < 2 < 3 => \(\sqrt{2}< \sqrt{3}\)

Lại có : 0 < 11 < 25 => \(\sqrt{11}< \sqrt{25}=5\)

=> \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

k mk nha

12 tháng 11 2016

a) có \(\sqrt{2}\) <\(\sqrt{3}\)

5= \(\sqrt{25}\) >\(\sqrt{11}\)

=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

12 tháng 11 2016

b)có \(\sqrt{21}>\sqrt{20}\)

-\(\sqrt{5}\) >-\(\sqrt{6}\)

=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

7 tháng 11 2018

Do \(\sqrt{1}=1;\sqrt{2}+\sqrt{3}+\sqrt{4}< 3.\sqrt{4}=6\)\(;\sqrt{5}+\sqrt{6}+...+\sqrt{9}< 5.\sqrt{9}=15\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{9}< 1+6+15=22\)(1)

Cung co:\(5.\sqrt{5}>5.\sqrt{4}=10\)\(\Rightarrow5.\sqrt{5}+12>10+12=22\)(2)

Tu (1) va (2) =>....

26 tháng 7 2019

a) Ta có 290>289

<=>  \(\sqrt{290}\)   >       \(\sqrt{289}\)

<=>  \(\sqrt{290}\)   >        17

Vậy ..........

26 tháng 7 2019

\(a,290>289\)

\(\Rightarrow\sqrt{290}>\sqrt{289}\)

\(\Rightarrow\sqrt{290}>17\)

\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

4 tháng 1 2024

1)\(x>y\)

2)\(x< y\)

3)\(x< y\)

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà \(-2\sqrt{105}>-2\sqrt{120}\)

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)

\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)

mà \(4< 6\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)