Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(M=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
N và M có \(\frac{-7}{10^{2005}}\) và\(\frac{-7}{10^{2006}}\) là chung nên hai phân số này sẽ bị mất
N còn \(\frac{-8}{10^{2006}}\) và M còn \(\frac{-8}{10^{2005}}\) nên ta chỉ cần so sánh \(\frac{-8}{10^{2006}}\) và \(\frac{-8}{10^{2005}}\)
Vì \(\frac{-8}{10^{2006}}\) > \(\frac{-8}{10^{2005}}\) nên N > M
\(\Rightarrow\) \(N>M\)
Ta có A=1/102005(-7-15/10)=1/102005.(-8,5) (1) B=1/102005(-15-7/10)=1/102005.(-15,7) (2) (1)(2)-> A>B
\(N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(M=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta xét M và N, ta có: \(\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}\text{ chung}\)
Mà: \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\Rightarrow M>N\)