K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(A=\frac{2016^{2016}+1}{2016^{2017}+1}\Rightarrow2016A=\frac{2016^{2017}+2016}{2016^{2017}+1}=1+\frac{2015}{2016^{2017}+1}\)

\(B=\frac{2016^{2017}-3}{2016^{2018}-3}\Rightarrow2016B=\frac{2016^{2018}-6048}{2016^{2018}-3}=1+\frac{-6045}{2016^{2018}-3}\)

Vì \(\frac{2015}{2016^{2017}+1}>0;\frac{-6045}{2016^{2018}-3}< 0\)

Nên: A>B

12 tháng 5 2016

cho mk hoi con cach giai nao khac ko z??

12 tháng 5 2016

 B=\(\frac{2016^{2017}-3}{2016^{2018}-3}\)<1 nên B<\(\frac{2016^{2017}-3+2019}{2016^{2018}-3+2019}\)=\(\frac{2016^{2017}+2016}{2016^{2018}+2016}\)=\(\frac{2016\left(2016^{2016}+1\right)}{2016\left(2016^{2017}+1\right)}\)=\(\frac{2016^{2016}+1}{2016^{2017}+1}\)=A

Vậy A>B

13 tháng 2 2018

Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)

        \(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

Ta có hai tổng A và B mới để so sánh:

\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

 Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V

31 tháng 7 2017

3 lon hon a

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

4 tháng 5 2018

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Ta có:

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Cộng vế theo vế, ta có:

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Vậy A >  B

28 tháng 5 2021
Bạn có nhầm không, tớ thấy cả hai đều giống nhau mà, Hai cái bằng nhau
5 tháng 5 2018

=.....nha các bn. k mình nha

5 tháng 5 2018

Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

       \(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)

Cộng vế theo vế, ta có : 

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

6 tháng 5 2019

có B=2015+2016+\(\frac{2017}{2016}\)+2017+2018

B=\(\frac{2015}{2015+2016+2017}\)+\(\frac{2016}{2016+2017+2018}\)+\(\frac{2017}{2016+2017+2018}\)

\(\frac{2015}{2016}\)>\(\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}\)>\(\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}\)>\(\frac{2017}{2016+2017+2018}\)

⇒A>B

Chúc bạn học tốt :")

6 tháng 5 2019

Dễ thấy B<1.

\(A=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)\)\(=3-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Vậy A>2.

Vậy A>B.