Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= \(\frac{7^{2015}+1}{7^{2017}+1}\)
B= \(\frac{7^{2017}+1}{7^{2019}+1}\)
Ta có A= \(\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}\)
= \(\frac{7^{2017}+49}{7^{2019}+49}\)
= \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)
Vì \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)>\(\frac{7^{2017}+1}{7^{2019}+1}\)
=> A>B
K MK NHA !
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{7^{2017}+1}{7^{2019}+1}< \frac{7^{2017}+1+48}{7^{2019}+1+48}=\frac{7^{2017}+49}{7^{2019}+49}=\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}=\frac{7^{2015}+1}{7^{2017}+1}=B\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Đặt A= 2015^2013+1/2015^2014+7, B=2015^2014-2/2015^2015-2
2015A= 2015^2014+2015/2015^2014+7= 1 + (2008/2015^2014+7)
2015B= 2015^2015-4030/2015^2015-2= 1 - (4028/2015^2015-2)
Do 2015A>1>2015B nên A>B
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)
\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)
Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1
= [(2015 - 1) : 2 + 1].(2015 + 1) : 2
= 1008.2016 : 2 = 1016064
Lại có : 2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng
= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)
= 2 + 2 + ... + 2 + 2 (504 số hạng 2)
= 2 x 504 = 1008
Khi đó A = \(\frac{1016064}{1008}=1008\)
b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)
Khi đó : B/100 = 1/2
=> B = 50
Vậy B = 50
Xét bài toán :
So sánh \(\frac{a}{b}\)và \(\frac{a+m}{b+m}\)( a>b , m>0)
Có \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Mà a>b => am > bm => \(\frac{ab+am}{b\left(b+m\right)}>\frac{ab+bm}{b\left(b+m\right)}\)hay \(\frac{a}{b}>\frac{a+m}{b+m}\)
Áp dụng : \(A=\frac{3^{2017}+5}{3^{2015}+5}>\frac{3^{2017}+5+4}{3^{2015}+5+4}=\frac{3^{2017}+9}{3^{2015}+9}=\frac{3^2\left(3^{2017}+9\right)}{3^2\left(3^{2015}+9\right)}\)
\(=\frac{3^{2015}+1}{3^{2013}+1}=B\)
=> A > B
Mình ko bít có đúng ko nên sai đừng trách mình nhé !
\(A=\frac{7^{2011}+1}{7^{2013}+1}\)
\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)
\(B=\frac{7^{2013}+1}{7^{2015}+1}\)
\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\)
\(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)
\(Vậy\) \(A>B\)
Bài 2 nè
ta xét B trước:
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)
\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
\(=1\)
\(2.\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{2013}+\frac{1}{2015}+\frac{1}{2017}\right)\)
\(=2.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)
\(=2.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2017}+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(=2.\left(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}\right)-1\)
Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)ta có:
\(B=\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2017}+1+2014}{2015^{2018}+1+2014}=\frac{2015^{2017}+2015}{2015^{2018}+2015}\)
\(=\frac{2015\left(2015^{2016}+1\right)}{2015\left(2015^{2017}+1\right)}=\frac{2015^{2016}+1}{2015^{2017}+1}\)
\(\Rightarrow\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2016}+1}{2015^{2017}+1}\)
Vậy \(B< A\)
Hay \(A>B\)