Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3111<3211=(25)11=255
=>3111<255
1714>1614=(24)14=256
1714>256
vì 255<256 nên
3111<255<256<1714
vậy 3111<1714
Câu 1
\(3^{39}<3^{42}=3^{2\times21}=\left(3^2\right)^{21}=9^{21}<11^{21}\)
\(\Rightarrow\) 339<1121
Tick nha
3^39 và 11^21
3^39<3^40=(3^2)^20=9^20(1)
11^20<11^21(2)
9^20<11^20(3)
Từ (1);(2) và (3) => 3^39<9^20<11^20<11^21
=> 3^39<11^21
Vậy......
333^444 và 444^333
333^444=(333^4)^111=12296370321^111(1)
444^333=(444^3)^111=87528384^111(2)
Từ (1) và (2) =>333^444<444^333
Vậy...........
\(a,3^6=3^{2.3}=\left(3^2\right)^3=9^3.\)
\(6^3=6^3\)
Vì \(9^3>6^3\Rightarrow3^6>6^3\)
\(b,5^{30}=5^{3.10}=\left(5^3\right)^{10}=125^{10}\)
\(124^{10}=124^{10}\)
Vì \(125^{10}>124^{10}\Rightarrow5^{30}>124^{10}\)
\(c,3^{21}=3^{20}.3^1=3^{2.10}.3=9^{10}.3\)
\(2^{31}=2^{30}.2^1=2^{3.10}.2=8^{10}.2\)
Vì \(9^{10}+3>8^{10}+2\Rightarrow3^{21}>2^{31}\)
\(e,5^{28}=5^{2.14}=\left(5^2\right)^{14}=25^{14}\)
\(26^{14}=26^{14}\)
Vì \(25^{14}< 26^{14}\Rightarrow5^{28}< 26^{14}\)
\(f,27^5=\left(3^3\right)^5=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{15}\)
Vì \(3^{15}=3^{15}\Rightarrow27^5=243^3\)
\(g,3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)
Vì \(243^{100}< 343^{100}\Rightarrow3^{500}< 7^{300}\)
a,36và 63
3^6=3^3.3^3
6^3=(2.3)^3=2^3.3^3
vi 3^3.3^3>2^3.3^3
nen 3^6>6^3
do 3 < 16 và 11<14 => 3^11 < 16^14
311<1614
Vì 311=17747
1614=7205759404
=>311<1614
Vậy 311<1614