Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) (Bạn có thể chứng minh bằng biến đổi tương đương)
Ta có : \(\frac{\sqrt{1991}+\sqrt{1993}}{2}\le\sqrt{\frac{1991+1993}{2}}\)
\(\Leftrightarrow\sqrt{1991}+\sqrt{1993}\le2\sqrt{1992}\)
2) Đề thiếu điều kiện
3) Mình sửa lại đề chút xíu nhé :)
Áp dụng bđt Bunhiacopxki , ta có : \(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le ab\)
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.
a) Ta có : \(\left(\sqrt{11}+\sqrt{13}\right)^2=11+2\sqrt{11.13}+13=24+2\sqrt{143}\)
\(\left(2.\sqrt{12}\right)^2=4.12=24+2.\sqrt{144}\)
mà \(\sqrt{144}>\sqrt{143}\Rightarrow24+2\sqrt{144}>24+2\sqrt{143}\Rightarrow\left(2.\sqrt{12}\right)^2>\left(\sqrt{11}+\sqrt{13}\right)^2\)
\(2.\sqrt{12}>\sqrt{11}+\sqrt{13}\)
b) Ta có : \(\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{69}\right)\)
\(\Leftrightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}\)
Từ kq câu a \(\Rightarrow\sqrt{69}+\sqrt{67}< 2\sqrt{68}\)
\(\Rightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}< 0\)
\(\Rightarrow\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{67}\right)< 0\)
\(\Rightarrow\sqrt{69}-\sqrt{68}< \sqrt{68}-\sqrt{67}\)