\(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}v\text{à}\frac{1}{2^2\cdot3\cdot5^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}\)

=> A < \(\frac{1}{100.101}+\frac{1}{101.102}+....+\frac{1}{204.205}\)

=> A < \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{204}-\frac{1}{205}\)

=> A < \(\frac{1}{100}-\frac{1}{205}\)

=> A < \(\frac{1}{2100}\)

Đặt B = \(\frac{1}{2^2.3.5^2.7}=\frac{1}{2100}\)

=> A < B

=> \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}<\frac{1}{2^2.3.5^2.7}\)

25 tháng 10 2015

giỏi lắm mình cũng biết làm chỉ hỏi chơi thôi 

ủng hộ

28 tháng 6 2016

\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(E=\frac{1}{1}-\frac{1}{99}\)

\(E=\frac{98}{99}\)

28 tháng 6 2016

E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt 

13 tháng 12 2018

Đặt \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{n\left(n+2\right)}\)

\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\left(n+2\right)}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(2A=\frac{1}{3}-\frac{1}{n+2}\)

\(2A=\frac{n-1}{3\left(n+2\right)}\)

\(A=\frac{n-1}{6\left(n+2\right)}\)

Ta có : \(\frac{1}{2}=\frac{3\left(n+2\right)}{2\cdot3\left(n+2\right)}=\frac{3n+6}{6\left(n+2\right)}\)

Dễ thấy \(n-1< 3n+6\)

Do đó \(\frac{1}{2}>A\)

13 tháng 12 2018

1/2×(1/3-1/5+1/5-1/7+.....+1/n-1/n+2)

=> 1/2×(1/3-1/n+2) <1/2

=> 1/3-1/n+2< 1

Vậy 1/3×5+1/5×7+....+1/n×n+2 < 1/2

21 tháng 4 2016

Ta có: 2/1.3 = 1/1 - 1/3

          2/3.5 = 1/3 - 1/5

\(\Rightarrow\) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

=   1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/100

=   1 - 1/100

=    99/100

21 tháng 4 2016

tích trên sẽ = 1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100

=1-1/100 =99/100

bạn nhớ rằng  k/n.(n+k) sẽ = 1/n-1/n+k

9 tháng 7 2016

Mình chỉ làm cho bạn câu d và e thôi 

d)  ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....... +1/99 - 1/100 ) . (x - 3)=1

     ( 1 - 1/100 ) . (x - 3 )=1

     99/100.(x -3)=1

     x - 3 = 1:99/100

     x - 3 =100/99

     x = 100/99 + 3

     x = 397/99

e) (1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +.....+1/99 - 1/101 ) . (x+2) =3/101

   (1/2 . ( 1 - 1/101 ).(x+2)=3/101

   (1/2 . 100/101 ) . (x + 2) =3/101

   100/202 . ( x + 2 )= 3/101

   50/101 . (x + 2 ) = 3/101

  x + 2 = 3/101 :50/101

  x+2=3/50

  x =3/50-2

x= -97/100

19 tháng 7 2017

Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)

2 tháng 10 2017

A = 

A = \(1-\frac{1}{2018}\)

A = \(\frac{2017}{2018}\)

Có : 

2.B = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

2.B = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

2.B = \(1-\frac{1}{2017}\)

2.B = \(\frac{2016}{2017}\)

B = \(\frac{2016}{2017}:2=\frac{1008}{2017}\)

Có :

3.C = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2017.2020}\)

3.C = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2017}-\frac{1}{2020}\)

3.C = \(\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)

C = \(\frac{2019}{2020}:3=\frac{673}{2020}\)

2 tháng 10 2017

a=1/1-1/2+1/2-1/3+...+1/2017-1/2018

=1/1-1/2018

=kq

may bai duoi lam tuong tu nha

mình chưa điền kết quả ban tu dien nha