Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{100}=\left(2^2\right)^{50}\)
\(2^2=4< 5\)
\(2^{100}< 5^{50}\)
b) \(4^{30}=\left(4^3\right)^{10}\)
\(4^3=8^2\)
\(4^{30}=8^{20}\)
\(8^{20}=\left(8^2\right)^{10}\)
a)
Vì 3<5
\(\Rightarrow3^{30}< 5^{30}\)
\(\Rightarrow\left(-3\right)^{30}< \left(-5\right)^{30}\)
b)
Ta có
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{10}.\left(\frac{1}{2}\right)^{10}\)
\(=\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}\)
Ta có
\(\left(\frac{1}{2}\right)^{10}< 1\)
\(\Leftrightarrow\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
Ta có : (-5)30 = (-53)10 = (-125)10 = 12510
(-3)50 = (-35)10 = (-243)10 = 24310
Mà : 12510 < 24310
Nên : (-5)30 < (-3)50
(-5)30=(-5)3.10=((-5)3)10=(-125)10
(-3)50=((-3)5.10=((-3)5)10=(-243)10
vì 125<243 nên (-125)10<(-243)10
a, Ta có: 9^10= (9^2)^5= 81^5
mà 81>10 và 5>2 =>9^10>10^2
b, Ta có: -5^30=(-5^3)^10= -125^10
-3^50=(-3^5)^10= -243^10
vì -125>-243=>-5^30>-3^50
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
\(S=1+5+5^2+5^4+...+5^{200}\)
\(\Leftrightarrow5^2S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\left(5^{202}-1\right)\div24\)
a) S = 1 + 52 + 54 + ... + 5200
=> 52S = 52.(1 + 52 + 54 + ... + 5200)
=> 25S = 52 + 54 + 56 + ... + 5202
=> 25S - S = (52 + 54 + 56 + ... + 5202) - (1 + 52 + 54 + ... + 5200)
=> 24S = 5202 - 1
=> S = \(\frac{5^{202}-1}{24}\)
a)27^11=(3^3)^11=3^33
81^8=(3^4)8=3^32
vì 3^33>3^32 nên 27^11>81^8
b)ko biết làm chỉ biết 3^150>2^225
c)27^50=27^5x10=(27^5)^10=14348907^10
240^30=240^3x10=(240^3)^10=13824000^10
suy ra 27^50>240^30
a) Ta có: \(27^{11}=\left(3^3\right)^{^{11}}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^{^8}=3^{4.8}=3^{32}\)
Vì \(3^{33}>3^{32}\)
nên \(27^{11}>81^8\)
b) Ta có: \(3^{150}=3^{2.75}=\left(3^2\right)^{^{75}}=9^{75}\)
\(2^{225}=2^{3.75}=\left(2^3\right)^{^{75}}=8^{75}\)
vì \(9^{75}>8^{75}\)
nên \(3^{150}>2^{225}\)
c) Ta có:
\(\frac{27^{50}}{240^{30}}=\frac{27^{30}.27^{20}}{240^{30}}=\frac{3^{30}.3^{30}.3^{30}.3^{20}.3^{20}.2^{20}}{3^{30}.80^{30}}\)
\(=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{^{30}}}{80^{30}}=\frac{81^{30}}{80^{30}}\)
Vì \(\frac{81^{30}}{80^{30}}>1\)\(\Rightarrow\frac{27^{50}}{240^{30}}>1\)\(\Rightarrow27^{50}>240^{30}\)
Ta có:\(4^{30}=2^{30}.2^{30}=2^{30}.4^{15}>\left(2^3\right)^{10}.3^{15}=\left(8.3\right)^{10}.3^5>24^{10}.3\)
Do đó \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
\(5^{30}=\left(5^3\right)^{10}=125^{10};3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì \(125^{10}<243^{10}\) nên \(5^{30}<3^{50}\)
Đối với số âm thì ngược lại nên : \(-5^{30}>-3^{50}\)
khó thế