Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/2+1/3+....+1/63>1/30+1/30+1/30+...+1/30=1/30 x 62=31/15>2
vì có 62 số hạng nên mk nhân với 62 nha
a) \(A=1+2+2^2+...+2^{63}\)
\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{63}\right)\)
\(\Rightarrow2A=2+2^2+...+2^{64}\)
\(\Rightarrow2A-A=2+2^2+...+2^{64}-\left(1+2+2^2+...+2^{63}\right)\)
\(\Rightarrow A=2+2^2+...+2^{64}-1-2-2^2-...-2^{63}\)
\(\Rightarrow A=2^{64}-1\)
Vì \(2^{64}-1=2^{64}-1\Rightarrow A=B\)
b) \(A=3^4+3^5+...+3^{20}\)
\(\Rightarrow3A=3^5+3^6+...+3^{21}\)
\(\Rightarrow3A-A=3^5+3^6+...+3^{21}-3^4-3^5-...-3^{20}\)
\(\Rightarrow2A=3^{21}-3^4\)
\(\Rightarrow A=\frac{3^{21}-3^4}{2}\)
Mà \(B=\frac{3^{21}-3^4}{2}\Rightarrow A=B\)
ta có:
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{64}\) = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+..+\frac{1}{8}\right)+...+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
>\(\frac{3}{2}+\frac{1}{4}+\frac{1}{4}+\frac{4}{8}+\frac{4}{8}+..+\frac{32}{64}+\frac{32}{64}\)=\(\frac{3}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)>\(4\)
vạyA>4(đpcm)
Ta co:S=4^0+4^1+4^2+...+4^35
=>4S=4^1+4^2+...+4^36
=>4S-S=(4^1+4^2+...+4^36)-(4^0+4^1+...+4^35)
hay 3S=4^36-1
3S=64^12-1<64^12
Vay 3S<64^12
co gi hoi mik de mik lam tiep nhe
bye...
Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)
\(S=4^0+4^1+...+4^{34}+4^{35}\)
\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)
\(\Rightarrow4S-S=4^{36}-4^0\)
\(\Rightarrow3S=4^{36}-1< 4^{36}\)
Vậy \(3S< 64^{12}\)
\(S=4^0+4^1+4^2+4^3+...+4^{35}\)
\(4S=4^1+4^2+4^3+...+4^{36}\)
\(4S-S=(4^1+4^2+4^3+...+4^{36})-(4^0+4^1+4^2+4^3+...+4^{35})\)
\(3S=4^{36}-4^0\)
\(S=4^{36}-1\)
\(\text{Ta thấy :}64^{12}=(4^3)^{12}=4^{36}\)
\(\text{Mà }4^{36}-1>4^{36}\text{ nên }3S>A\)