K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

13 tháng 4 2019

A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)

A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)

A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2

A>4

13 tháng 4 2019

cảm ơn nha

13 tháng 8 2015

Ta có : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+.....+\frac{1}{196}\)

=>A=\(\frac{1}{2^2}+\frac{1}{4^2}+......+\frac{1}{13^2}\)

=>A<\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{12.13}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{12}-\frac{1}{13}\)

Ta thấy 1/2>1/3;1/4>1/5;........;1/12>1/13

mà các số lớn hơn được xếp vào nhóm số trừ lớn hơn các số được cộng 

nên A>1/2

13 tháng 4 2016

Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)

=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)

\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)

=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

=4

Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)