K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\dfrac{2}{20^{10}-1}>\dfrac{2}{20^{10}-3}\Leftrightarrow A>B\)

6 tháng 4 2018

A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1

B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3

Vì ... bạn tự làm nha.nhớ k đấy

6 tháng 4 2018

A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)

B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì 2010-1 > 2010-3

=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

=> A < B

Vậy A < B

DD
27 tháng 6 2021

a) \(A=-\frac{13}{4}=-3-\frac{1}{4}< -3,B=\frac{17}{-6}>\frac{18}{-6}=-3\)

suy ra \(A< B\).

b) \(\frac{20^{10}+1}{20^{10}-1}=1+\frac{2}{20^{10}-1},\frac{20^{10}-1}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Có \(20^{10}-1>20^{10}-3>0\Leftrightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

Suy ra \(A< B\).

27 tháng 6 2021

ông đi qua bà đi lại có ai biết làm không thì GIÚP MK VỚI

26 tháng 4 2016

Ta có:

A=\(\frac{20^{10}}{20^{10}-1}+\frac{1}{20^{10}-1}\)

B=\(\frac{20^{10}}{20^{10}-3}-\frac{1}{20^{10}-3}\)

Vì 2010-1>2010-3 =>A>B

26 tháng 4 2016

K HỘ MK NHÉ

A<B

thấy rõ ở phép tính

17 tháng 4 2017

cách trình bày mà bố nội

20 tháng 4 2016

\(A=\frac{2010+1}{2010-1}\)

\(A=1+\frac{2}{2010-1}>1\)

\(B=\frac{2010-1}{2010-3}\)

\(B=1-\frac{2}{2010-3}<1\)

Từ đó A > B

30 tháng 4 2017

Ta thấy:\(A=\frac{20^{10}+1}{20^{10}-1}>1\)

Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)

Vậy \(A>B\)

3 tháng 5 2017

Ta có:

\(A=\frac{20^{10}+1}{20^{10}-1}\)

\(=\frac{20^{10}-1+2}{20^{10}-1}\)

\(=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}\)

\(=\frac{20^{10}-3+2}{20^{10}-3}\)

\(=1+\frac{2}{20^{10}-3}\)

Ta lại có:

\(20^{10}-1>20^{10}-3\)

\(\Rightarrow\)\(\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\)

\(\Rightarrow\)\(1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)

Vậy ta kết luận A < B