Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
Ta thấy: \(2^{2023}-1=2^{2023}-1\)
Vậy: \(A=B\)
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
bạn không nên gửi những thứ linh tinh này vào olm nhé. Có người bị ám cả đời vì đọc rồi đấy
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
\(2A=2^2+2^4+2^5+...+2^{2011}\)
\(\Leftrightarrow A=2^{2011}-2< 2^{2022}-2\)
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
a) 2011 . 2013 = 2011 . ( 2012 + 1 ) = 2011 . 2012 + 2011
20122 = 2012 . 2012 = ( 2011 + 1 ) . 2012 = 2011 . 2012 + 2012
Vì 2011 . 2012 + 2011 < 2011 . 2012 + 2012 nên 2011 . 2013 < 20122
B = 2^2023 chứ nhỉ
A = 2^0 + 2^1 + 2^2 + ... + 2^2022
2A = 2^1 + 2^2 + 2^3 + ... + 2^2023
=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)
=> A = 2^2023 - 2^0
=> A = 2^2023 - 1
=> A và B là 2 stn liên tiếp
Ta có:
A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021
⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022
⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)
⇔A=22022−20⇔A=22022−20
⇔A=22022−1⇔A=22022−1
Mà B=22022⇒B=A+1B=22022⇒B=A+1
⇒A⇒A và BB là 22 số tự nhiên liên tiếp.
chúc học tốt.
\(A=2+2^2+2^3+...+2^{2021}\\ \Leftrightarrow2A=2^2+2^3+2^4+...+2^{2022}\\ \Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2022}\right)-\left(2+2^2+2^3+...+2^{2021}\right)\\ \Leftrightarrow A=2^{2022}-2\\ 2^{2022}-2< 2^{2022}\Rightarrow A< B\)
A = 2 + 2 2 + 2 3 + . . . + 2 2021 ⇔ 2 A = 2 2 + 2 3 + 2 4 + . . . + 2 2022 ⇔ 2 A − A = ( 2 2 + 2 3 + 2 4 + . . . + 2 2022 ) − ( 2 + 2 2 + 2 3 + . . . + 2 2021 ) ⇔ A = 2 2022 − 2 2 2022 − 2 < 2 2022 ⇒ A < B