Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3
a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)
\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)
\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)
\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)
.... (tương tự )
\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)
\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)
Từ (1)(2)(3)(4) và (5)
\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)
\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)
S = 1/21 + 1/22 + ... + 1/30
Số lượng số của S là :
( 30 - 21 ) : 1 + 1 = 10 ( số )
Ta có : 1/21 > 1/30 , 1/22 > 1/30 , ... 1/29 > 1/30 , 1/30 = 1/30
=> 1/21 + 1/22 + ...+ 1/30 ( 10 số ) > 1/30 + 1/30 + ...+ 1/30 ( 10 số )
=> S > 1/30 . 10
=> S > 1/3
Chúc bạn học giỏi !!!!
Ta có :
1/21 > 1/30
1/22 > 1/30
.........
1/29 > 1/30
=> S > 1/30 + 1/30 + ...... + 1/30 ( có 10 phân số 1/30 )
= 10/30 = 1/3
=>S > 1/3
Tk mk nha
\(\frac{1}{4}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}\)= 0,4330783347
\(\frac{1007}{2013}\)= 0, 5002483855
Vậy :\(\frac{1}{4}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}\) < \(\frac{1007}{2013}\)
Ta có : 1/21 > 1/30 ; 1/22 > 1/30 ;...; 1/29 > 1/30
=> 1/21 + 1/22 + .. + 1/29 > 1/30 + 1/30 +... + 1/30 (10 số 1/30) = 10/30 = 1/3 (**)
Lại có : 1/31 > 1/40 ; 1/32 > 1/40 ; ...; 1/39 > 1/40
=> 1/31 + 1/32 +... + 1/39 > 1/4 (**)
Đặt A =1/21 +1/22 +1/23 +... + 1/29 +1/31 + ... +1/39
Từ (*) và (**) => A > 1/3 + 1/4 => A > 7/12 (hay A>K)
Mà A<H => H>K