Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
a) Vì 1,25 < 2,3 nên -1,25 > -2,3 hay a > b
\(\begin{array}{l}\left| a \right| = \left| { - 1,25} \right| = 1,25;\\\left| b \right| = \left| { - 2,3} \right| = 2,3\end{array}\)
Vì 1,25 < 2,3 nên \(\left| a \right| < \left| b \right|\).
b) Ta có -12,7 và -7,12 là các số âm, |-12,7|=12,7; |-7,12|=7,12
Vì 12,7 > 7,12 nên |-12,7| > |-7,12|
Vậy -12,7 < -7,12.
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}<\frac{ab+b.2012}{b.\left(b+2012\right)}\)
=>\(\frac{a}{b}<\frac{a+2012}{b+2012}\)
a) Khi a, b là hai số dương:
|a| = a; |b| = b
Khi đó, |a| < |b| , tức là a < b
Vậy a < b
b) Khi a, b là hai số âm:
|a| = - a; |b| = - b
Khi đó, |a| < |b| , tức là - a < - b hay a > b
Vậy a > b
a: |a|<|b|
mà a,b dương
nên a<b
b: a,b là hai số âm
|a|<|b|
Do đó: a>b