Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Minh bạn chỉ đăng 1,2 câu trả lời thôi nhé , chứ dài quá
Mình sẽ làm bài 1,2
1.\(a,\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}=\frac{37}{11}x-\frac{8}{11}\)
\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}-\frac{37}{11}x=-\frac{8}{11}\)
\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x-\frac{37}{11}x+\frac{25}{11}=-\frac{8}{11}\)
\(\Leftrightarrow\frac{121}{11}x=-3\)
\(\Leftrightarrow11x=-3\Leftrightarrow x=-\frac{3}{11}\)
\(b,3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=\frac{21}{10}\)
\(3x-\left[\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}\right]=\frac{21}{10}\)
\(3x-\left[5\left\{\frac{3}{5\cdot8}-\frac{3}{8\cdot11}-\frac{3}{11\cdot14}-...-\frac{3}{47\cdot50}\right\}\right]=\frac{21}{10}\)
Làm nốt :v
2. Gọi hai phân số đó là \(\frac{a}{b}\)và \(\frac{c}{d}\)
Theo đề bài ta có : \(\frac{a}{b}+\frac{c}{d}=\frac{4}{33}\Rightarrow\frac{ad+bc}{bd}=\frac{4}{33}\Rightarrow ad+bc=\frac{4}{33}bd\)
\(\frac{a}{b}\cdot\frac{c}{d}=-\frac{4}{11}\Rightarrow\frac{bd}{ac}=\frac{-11}{4}\)
Tổng các số nghịch đảo của hai phân số trên là :
\(\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}=\frac{\frac{4}{33}bd}{ac}=\frac{4}{33}\cdot\left[-\frac{11}{4}\right]=-\frac{1}{3}\)
Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.
(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.
Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.
Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:
Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì
a) Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.
b) Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ modulo m.
Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác
(x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).
Ta có
Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì
(ax1,a x2, …, axj(m)) cũng là một hệ thặng dư thu gọn modulo m.
Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.
Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.
~Hok tốt`
P/s:Ko chắc
\(a< b< c< d< e< f\)
\(\Rightarrow a+c+e< b+d+f\)
\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)
\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
- Gọi các số cần tìm theo thứ tự từ bé -> lớn là : a1 ; a2 ; a3 ; ... a100
- Ta có : a1 ; a2 ; a3 ; a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2;a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ ; a2 là số dương => a3 ; a4 ; a100 đều là số dương ( vì đã từ bé -> lớn ) -> mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp => tích 100 số trên là số dương
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0 Đ
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên S
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm S
d) 0 là số hữu tỉ dương S
a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d
- Gọi các số cần tìm theo thứ tự từ bé -> lớn là
- Ta có
=> Cả 3 số cùng âm
hoặc âm và dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+; là số dương => đều là số dương ( vì đã từ bé -> lớn ) -> mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp ( là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp => tích 100 số trên là số dương
Gọi các số cần tìm theo thứ tự từ bé đến lớn : a1,a2,...,a100
Ta có a1.a2.a100<0
=> Cả ba số cùng âm
hoặc a1 âm và a2; a100 dương ( không thể theo thứ tự khác vì từ dầu ta đã nói từ bé đến lớn )
+) a2 là số dương => a3 ,a4 ,..., a100 đều là số dương ( vì đã từ bé đến lớn ) => mâu thuẫn vì tích 3 số bất kì <0
=> Trường hợp ****( a100 là số âm )
=> 100 số đều là số âm
- Tích của 2 số âm là 1 số dương mà có 50 cặp
=> Tích của 100 số trên đều là số dương
Gọi các số cần tìm theo thứ tự từ bé đến lớn là : \(a_1;a_2;a_3;...;a_{100}\)
Ta có : \(a_1\cdot a_2\cdot a_{100}< 0\)
=> Cả ba số cùng âm
hoặc \(a_1\)âm và \(a_2;a_{100}\)là số dương \((\)không thể thiếu theo thứ tự khác vì từ đầu ta đã nói từ bé đến lớn\()\)
+ \(a_2\)là số dương => \(a_3;a_4;...;a_{100}\)đều là số dương \((\)vì đã từ bé đến lớn\()\)=> mâu thuẫn vì tích ba số bất kì đều < 0
=> Trường hợp **** \((a_{100}\)là số âm\()\)
=> 100 số đề là số âm
Tích của hai số âm là 1 số dương mà có 50 cặp
=> Tích 100 số trên là số dương