Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}>12=\left(\sqrt{12}\right)^2\\ \Rightarrow\sqrt{5}+\sqrt{7}>\sqrt{12}\)
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\sqrt{2007}+\sqrt{2006}}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vì \(\sqrt{2006}+\sqrt{2005}< \sqrt{2007}+\sqrt{2006}\)
Nên \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vậy \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
a) Ta có:
√2005 + √2003 > √2002 + √2000
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000)
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000)
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000)
<=> √2005 - √2003 < √2002 - √2000
<=> √2005 + √2000 < √2002 + √2003
b) Tương tự câu a
√(a + 6) + √(a + 4) > √(a + 2) + √a
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a]
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a]
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a]
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a
<=> √(a + 6) + √a < √(a + 4) + √(a + 2)
đúng ko ?
toan la toan chu ko phai phim hoat hinh
ý của nhất sông núi là sao?