Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Leftrightarrow\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-1}{17}-5=0\)
\(\Leftrightarrow\frac{x-90-10}{10}+\frac{x-76-2.12}{12}+\frac{x-58-3.14}{14}+\frac{x-36-4.16}{16}+\frac{x-15-5.17}{17}=0\)
\(\Leftrightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\Leftrightarrow x=100\)
Vậy \(S=\left\{100\right\}\)
b) \(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
\(\Leftrightarrow\frac{x+2011}{2013}+1+\frac{x+2012}{2012}+1=\frac{x+2010}{2014}+1+\frac{x+2013}{2011}+1\)
\(\Leftrightarrow\frac{x+2011+2013}{2013}+\frac{x+2012+2012}{2012}=\frac{x+2010+2014}{2014}+\frac{x+2013+2011}{2011}\)
\(\Leftrightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)
\(\Leftrightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)
\(\Leftrightarrow x+4024=0\Leftrightarrow x=-4024\)
Vậy \(S=\left\{-4024\right\}\)
Phương trình a bạn trừ phân thức đầu tiên cho 1, phân thức thứ hai cho 2, phân thức thứ ba cho 3, phân thức thứ tư cho 4, phân thức thứ năm cho 5, vế còn lại trừ đi 15. Tiếp theo bạn đặt x -100 làm nhân tử chung. Cuối cùng tìm được x= 100
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
pt \(\Leftrightarrow\frac{2-x}{2011}+1=\frac{1-x}{2012}+1-\frac{x}{2013}+1\)
\(\Leftrightarrow\frac{2013-x}{2011}=\frac{2013-x}{2012}+\frac{2013-x}{2013}\)
\(\Leftrightarrow\left(2013-x\right)\left(\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\ne0\)nên \(2013-x=0\Leftrightarrow x=2013\)
Vậy pt có 1 nghiệm là x=2013
Ta có:
\(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(\frac{2012}{2013}=1-\frac{1}{2013}\)
\(\frac{2013}{2014}=1-\frac{1}{2014}\)
Do \(\frac{1}{2012}>\frac{1}{2013}>\frac{1}{2014}\)=> \(-\frac{1}{2012}< -\frac{1}{2013}< -\frac{1}{2014}\)
=> \(1-\frac{1}{2012}< 1-\frac{1}{2013}< 1-\frac{1}{2014}\)
=> \(\frac{2011}{2012}< \frac{2012}{2013}< \frac{2013}{2014}\)