K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

A=1+1/2+........+1/1002

=>A<1+1/1*2+1/2*3 +......+1/99*100

=> A< 1+ 1-1/2 +1/2-1/3+......+1/99 -1/100=2-1/100

=>A<2

7 tháng 3 2017

A<2 k mk nha

Dấu > nha bạn

\(\frac{-1}{3}>\frac{-2}{3}\)

hok tốt

^_^

5 tháng 9 2016

\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(A=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)

\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}...\frac{9999}{100^2}\right)\)(vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)

\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\right)\)

\(A=-\left(\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\right)\)

\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)=-\frac{101}{200}\)

\(A< -\frac{100}{200}=-\frac{1}{2}\)

14 tháng 6 2017

Đặt \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

+ Xét : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 2\)

\(\Leftrightarrow A< B< 2\left(đpcm\right)\)

4 tháng 3 2017

TK minh nhe

3 tháng 8 2016

\(A=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}+\frac{1}{100!}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A< 1+1-\frac{1}{100}\)

\(A< 2-\frac{1}{100}< 2\)

4 tháng 8 2016

\(A=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}+\frac{1}{100!}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A< 1+1-\frac{1}{100}\)

\(A< 2-\frac{1}{100}< 2\)