K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Ta có:\(\frac{1+2+3+...+a}{a}=\frac{a\left(a+1\right)}{a}=a+1\)

\(\frac{1+2+3+...+b}{b}=\frac{b\left(b+1\right)}{b}=b+1\)

Vì \(\frac{1+2+...+a}{a}< \frac{1+2+...+b}{b}\Rightarrow a+1< b+1\Rightarrow a< b\)

Vậy a < b

28 tháng 7 2018

\(\frac{x}{3\frac{1}{2}.2\frac{2}{3}}=\frac{9}{56}\Rightarrow\frac{x}{\frac{7}{2}.\frac{8}{3}}=\frac{9}{56}\Rightarrow x=\frac{9}{56}.\frac{28}{3}=\frac{3}{2}\)

28 tháng 7 2018

\(x:\left(3\frac{1}{2}.2\frac{2}{3}\right)=\frac{9}{56}\)

\(x:\left(\frac{7}{2}.\frac{8}{3}\right)=\frac{9}{56}\)

\(x:\left(\frac{7.4}{3}\right)=\frac{9}{56}\)

\(x.\frac{3}{28}=\frac{9}{56}\)

\(x=\frac{9}{56}.\frac{28}{3}=\frac{3}{2}\)

Vậy \(x=\frac{3}{2}\)

a) Vì từ (-1) đến (-2020) có 2020 số hạng nên tích \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2020\right)\) sẽ là số dương vì đây là tích của những số âm có số số hạng là số chẵn

hay \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2020\right)>0\)

b) 

Vì từ (-1) đến (-2021) có 2021 số hạng nên tích \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2021\right)\) sẽ là số âm vì đây là tích của những số âm có số số hạng là số lẻ

hay \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2021\right)< 0\)

12 tháng 4 2017

Ta có A=\(\frac{1}{5}\)+\(\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)\)+\(\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta lại có: \(\frac{1}{5}=\frac{1}{5}\)

\(\frac{1}{13}=\frac{1}{13},\frac{1}{13}>\frac{1}{14},\frac{1}{13}>\frac{1}{15}\)

\(\frac{1}{61}=\frac{1}{61},\frac{1}{61}>\frac{1}{62},\frac{1}{61}>\frac{1}{63}\)

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)<\(\frac{1}{5}+\frac{1}{13}+\frac{1}{13}+\frac{1}{13}+\frac{1}{61}+\frac{1}{61}+\frac{1}{61}\)

A<\(\frac{1}{5}+\frac{1}{13}x3+\frac{1}{61}x3\)

A<\(\frac{1}{5}+\frac{3}{13}+\frac{3}{61}=0,4799...< \frac{1}{2}\)

Vậy A<\(\frac{1}{2}\)

Mình viết phân số lâu lắm đó tk cho mình nha. Mình cảm ơn nhiều ^-^

12 tháng 4 2017

A bé hơn \(\frac{1}{2}\)

8 tháng 12 2018

\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)

\(b)A=1+2^1+2^2+...+2^{2017}\)

\(2A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)

\(A=2^{2018}-1\)

...

Rồi còn khúc để bạn so sánh đó

16 tháng 7 2019

TL mà cảm ơn bạn nhé

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

A=1/1.2+1/2.3+...1/x =49/50

A=1-1/2+1/2-1/3+...+1/x-1-1/x=49/50

A=1-1/x=49/50

A=50/50-1=x=49/50

x=1/50

29 tháng 7 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x-1\right)}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x-1}-\frac{1}{x}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{x}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{50}\)

\(\Rightarrow x=50\)

30 tháng 7 2018

\(A=19\frac{1}{4}+\frac{1}{2}\times2\frac{1}{3}+5,75-\frac{1}{6}+74\)

MK GHI ĐẦY ĐỦ RA RÙI, BẠN TỰ BẤM MÁY TÍNH LÀM NHA ( MÌNH LƯỜI )

30 tháng 7 2018

\(A=19\frac{1}{4}+\frac{1}{2}\times2\frac{1}{3}+5,75-\frac{1}{6}+74\)

\(A=\frac{77}{4}+\frac{1}{2}\times\frac{7}{3}+\frac{23}{4}-\frac{1}{6}+74\)

\(A=\frac{77}{4}+\frac{7}{6}+\frac{23}{4}-\frac{1}{6}+74\)

\(A=(\frac{77}{4}+\frac{23}{4})+(\frac{7}{6}-\frac{1}{6})+74\)

\(A=25+1+74\)

\(A=26+74\)

\(A=100\)