Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : a + 1 > a - 1
=> \(\frac{1}{a+1}\) < \(\frac{1}{a-1}\)
a) \(\frac{1}{a+1}< \frac{1}{a}< \frac{1}{a-1}\Rightarrow\frac{1}{a+1}< \frac{1}{a-1}\)
b) \(\frac{23}{47}< \frac{23}{45}< \frac{24}{45}\Rightarrow\frac{23}{47}< \frac{24}{45}\)
c) \(\frac{12}{17}>\frac{1}{2}>\frac{7}{15}\Rightarrow\frac{12}{17}>\frac{7}{15}\)
d) \(\frac{34}{43}< \frac{35}{43}< \frac{35}{42}\Rightarrow\frac{34}{43}< \frac{35}{42}\)
\(A=1+\frac{1}{2}+...+\frac{1}{16}\)
= \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{12}\right)+\left(\frac{1}{13}+...+\frac{1}{16}\right)\)
> \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
=\(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
=\(1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
= \(1+2\times\frac{13}{12}\)
= \(1+\frac{13}{6}\)
= \(1+2+\frac{1}{6}\)
= \(3+\frac{1}{6}\)>\(3\)
=> \(A>3+\frac{1}{6}>3\)
=> \(A>3+\frac{1}{6}>B\)
=> \(A>B\)
Ta có\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2=3=B\)
\(\Rightarrow A>B\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
a)
\(1-\frac{1998}{1999}=\frac{1}{1999}\)
\(1-\frac{1999}{2000}=\frac{1}{2000}\)
Vì \(\frac{1}{1999}>\frac{1}{2000}\)nên \(\frac{1998}{1999}< \frac{1999}{2000}\)
b) Ta có :
\(\frac{1999}{2001}< 1\)
\(\frac{12}{11}>1\)
Nên \(\frac{1999}{2001}< \frac{12}{11}\)
c)
\(1-\frac{13}{27}=\frac{14}{27}\)
\(1-\frac{27}{41}=\frac{14}{41}\)
Vì \(\frac{14}{27}>\frac{14}{41}\)nên \(\frac{13}{27}< \frac{27}{41}\)
d)
Ta có phân số trung gian là \(\frac{23}{45}\).
Ta có : \(\frac{23}{47}< \frac{23}{45}\) ; \(\frac{24}{45}>\frac{23}{45}\)
Nên \(\frac{23}{47}< \frac{24}{45}\)
Ta có :
Biểu thức A và B đều có 3 , cùng bỏ 3 ra khỏi 2 biểu thức .
Bây giờ có :
A = 1/15
B = 1/45 + 1/46 + 1/47
1/15 gấp 3 lần 1/45
Muốn hai biểu thức bằng nhau , ta cần 3 phân số 1/45 ở B . Nhưng các phân số 1/45 và 1/47 lại nhỏ hơn 1/45 nữa .
=> A > B