Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)
\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)
\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)
Mà \(\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)
Vậy : M > N
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~
trả lời
tui trả lời rui mà
chúc bà học tốt
nhớ k tui nha
cám ơn các bn
1.
a) \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{6}{2}.\frac{10}{39}\)
\(=\frac{10}{13}\)
b) \(\frac{3}{24}+\frac{3}{48}+\frac{3}{80}+\frac{3}{120}+\frac{3}{168}\)
\(=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)
\(=\frac{3}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\frac{5}{28}\)
\(=\frac{15}{56}\)
\(a.\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
Ta có\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2=3=B\)
\(\Rightarrow A>B\)
theo mk là
A thì = tất cả các phân số có tử bé hơn mẫu lên cho là bé hơn 1
B = 3
vậy B > A
Tính làm sao cũng được
tùy theo cách tính ( tự tìm A)
theo tui tính
A=3
B=3
=> A=B
\(A=1+\frac{1}{2}+...+\frac{1}{16}\)
= \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{12}\right)+\left(\frac{1}{13}+...+\frac{1}{16}\right)\)
> \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
=\(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
=\(1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
= \(1+2\times\frac{13}{12}\)
= \(1+\frac{13}{6}\)
= \(1+2+\frac{1}{6}\)
= \(3+\frac{1}{6}\)>\(3\)
=> \(A>3+\frac{1}{6}>3\)
=> \(A>3+\frac{1}{6}>B\)
=> \(A>B\)