Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :\(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\cdot\sqrt{3}=5+2\sqrt{6}>5=\left(\sqrt{5}\right)^2\)
\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>\left(\sqrt{5}\right)^2\Leftrightarrow\sqrt{2}+\sqrt{3}>\sqrt{5}\)
a) \(\sqrt{2}+\sqrt{3}>\sqrt{5}\)
b) \(\sqrt{2003}+\sqrt{2005}< 2.\sqrt{2004}\)
HOK TOT
Áp dụng BĐT CAuchy-Schwarz ta có:
Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)
\(\le\left(1+1\right)\left(2003+2005\right)\)
\(=2\cdot4008=8016\)
\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)
Bài này ta dùng phương pháp trục căn thức ở mẫu
Ta có: \(\frac{1}{a}=\frac{1}{\sqrt{2004}-\sqrt{2003}}=\frac{\sqrt{2004}+\sqrt{2003}}{\left(\sqrt{2004}-\sqrt{2003}\right)\left(\sqrt{2004}+\sqrt{2003}\right)}\)
\(=\frac{\sqrt{2004}+\sqrt{2003}}{2004-2003}=\frac{\sqrt{2004}+\sqrt{2003}}{1}=\sqrt{2004}+\sqrt{2003}\)
Tương tự: 1/b = căn 2005 + căn 2004
Vì căn 2004 + căn 2003 < căn 2005 + căn 2004
=> căn 2004 - căn 2003 > căn 2005 - căn 2004
Vậy a > b
P/s: Bài giải còn nhiều sai sót, mong các anh chị thông cảm và sửa cho em.
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
Ta có : \(\sqrt{2005}-\sqrt{2004}\) ; \(\sqrt{2004}-\sqrt{2003}\)
=> \(\sqrt{2005}>\sqrt{2004}>\sqrt{2003}\)
=> \(\sqrt{2005}-\sqrt{2004}\)> \(\sqrt{2004}-\sqrt{2003}\)
\(\sqrt{2005}-\sqrt{2004}=0.01116778328\)
\(\sqrt{2004}-\sqrt{2003}=0.01117057\)
\(\Rightarrow\sqrt{2005}-\sqrt{2004}>\sqrt{2004}-\sqrt{2003}\)
\(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003.2005}=4008+2\sqrt{2003.2005}\)
\(\left(2\sqrt{2004}\right)^2=4.2004=2.2004+2.2004=4008+2.2004\)
TA có 2003.2005 = (2004 -1 )(2004 + 1 ) = 2004 ^2 - 1 <2004 ^2
=> 2003 . 2005 < 2004^2 =>\(\sqrt{2003.2005}<\sqrt{2004^2}\) hay \(\sqrt{2003.2005}<2004\)
=> \(2.\sqrt{2003.2005}<2.2004\Rightarrow4008+2\sqrt{2003.2005}<4008+2.2004\)
=>\(\sqrt{4008+2\sqrt{2003.2005}}<\sqrt{4008+2.2004}\)
Hay \(\sqrt{2003}+\sqrt{2005}<2\sqrt{2004}\)
=> A< B
Ta có:20042-1<20044
=>2003.2005<20042
=>2\(\sqrt{2003.2005}\)<2.2004
Do 2003+2005=2004+2004
=>2003+2\(\sqrt{2003.2005}\)+2005<2004+2.2004+2004
=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2<\left(\sqrt{2004}+\sqrt{2004}\right)^2\)
=>\(\sqrt{2003}+\sqrt{2005}<2\sqrt{2004}\)