Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+3+...+n=((n-1)+1)*n/2=n^2/2
1+3+5+...+(2n-1)=(((2n-1)-1)/2+1)*n/2=n^2/2
2+4+6+...+2n=((2n-2)/2+1)*n/2=n^2/2
a) Ta có:
\(\frac{n+2}{2n+1}=\frac{1}{2}.\frac{2n+4}{2n+1}=\frac{1}{2}.\frac{2n+1+3}{2n+1}=\)
\(=\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)
\(\frac{n}{2n+3}=\frac{1}{2}.\frac{2n}{2n+3}=\frac{1}{2}.\frac{2n+3-3}{2n+3}\)
=\(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)
Ta thấy: \(1+\frac{3}{2n+1}\)>1 và \(1-\frac{3}{2n+3}\)< 1 => \(\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)> \(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)
=> \(\frac{n+2}{2n+1}\)> \(\frac{n}{2n+3}\)
b) Ta có:
\(\frac{n}{3n+1}=\frac{1}{3}.\frac{3n}{3n+1}=\frac{1}{3}.\frac{3n+1-1}{3n+1}=\)
= \(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)
\(\frac{2n}{6n+1}=\frac{1}{3}.\frac{6n}{6n+1}=\frac{1}{3}.\frac{6n+1-1}{6n+1}=\)
=\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)
Ta thấy: \(\frac{1}{6n+1}< \frac{1}{3n+1}\)(Do 6n+1>3n+1)
=>\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)> \(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)Hay \(\frac{2n}{6n+1}>\frac{n}{3n+1}\)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Ta có :
A = n / 2n + 1 = 3n / 3 ( 2n + 1 ) = 3n / 6n + 3
Vì 3n / 6n + 3 < 3n + 1/ 6n + 3 => A < B
Vậy A < B