Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A = 2003.2005 = 2003.2004 + 2003
B = 20042 = 2004.2003 + 2004
=> A < B
2) A = 123456787.123456789 = 123456787.123456788 + 123456787
B = 1234567882 = 123456788.123456787 + 123456788
=> A < B
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
1)/x-3/=9-2x
/x-3/=\(\hept{\begin{cases}x-3khix>3\\3-xkhix< 3\end{cases}}\)
TH1:x>3 phương trình là
x-3=9-2x
<=> x+2x=9+3
<=> 3x =12
<=> x =4 (thỏa mãn)
TH2:x<3 phương trình là
3-x=9-2x
<=>-x+2x=9-3
<=>x =6(không thỏa mãn-loại)
Vậy tập nghiệm của phương trình là S={4}
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Ta có \(A=2003.2005=2003.\left(2004+1\right)=2003.2004+2003\)
\(B=2004^2=2004.2004=2004.\left(2003+1\right)=2003.2004+2004\)
Vì 2003<2004 nên 2003.2004+2003<2003.2004+2004
Vậy A<B
\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\).Chúc bạn học tốt.
\(A=2003\cdot2005\)
\(A=\left(2004-1\right)\left(2004+1\right)\)
\(A=2004^2-1< 2004^2=B\)
Vậy \(A< B\)
Gọi 123456788 là A
\(123456789=a+1\)
\(123456787=a-1\)
\(A=\left(a+1\right).\left(a-1\right)\)
\(A=a^2-a+a-1\)
\(A=a^2-1\)
\(Vì:a^2-1< a^2\Leftrightarrow A< B\)