K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

Ta có:

\(5^{333}=\left(5^3\right)^{111}=125^{111}\)

\(11^{222}=\left(11^2\right)^{111}=121^{111}\)

Vì `125 > 121 =>`\(125^{111}>121^{111}\)

`=>`\(5^{333}>11^{222}\)

Vậy, \(5^{333}>11^{222}\)

_____

`@` So sánh lũy thừa cùng cơ số:

Nếu `m > n =>`\(a^m>a^n\left(m,n\ne0,a>1\right)\)

`@` So sánh lũy thừa cùng số mũ:

Nếu `a > b =>`\(a^m>b^m\left(a,b>1,m\ne0\right)\)

`@` `\text {Kaizuu lv uuu}`

23 tháng 2 2022

\(2^{333}=\left(2^3\right)^{111}=8^{111}\\ 3^{222}=\left(3^2\right)^{111}=9^{111}\)

\(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)

\(2^{333}=8^{111}< 9^{111}=3^{222}\)

22 tháng 1 2016

222^3=10941048>333222

222^3<222^333

=>222^333>3332222

14 tháng 12 2018

ta có: 2333 = (23)111 = 8111

3222 =(32)111 = 9111

=> ....

14 tháng 12 2018

TC \(2^{333}=\)\(2^{3.111}\)\(\left(2^3\right)^{111}=8^{111}\)

LC \(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)

MÀ 8<9

\(\Rightarrow8^{111}< 9^{111}\)

\(hay\)\(2^{333}< 3^{222}\)

24 tháng 11 2017

nguyenthanhtung NHỚ K

\(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

VÌ \(8^{111}< 9^{111}\)NÊN \(2^{333}< 3^{222}\)

30 tháng 9 2016

a/ \(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)

b/

\(20162016^{10}=\left(2016.10001\right)^{10}=2016^{10}10001^{10}\)

\(2016^{20}=2016^{10}.2016^{10}\)

\(10001^{10}>2016^{10}\Rightarrow2016^{10}.10001^{10}>2016^{10}.2016^{10}\Rightarrow20162016^{10}>2016^{20}\)

c/ \(\frac{222^{333}}{333^{222}}=\frac{\left(222^3\right)^{111}}{\left(333^2\right)^{111}}=\frac{\left(2^3.111^3\right)^{111}}{\left(3^2.111^2\right)^{111}}=\left(\frac{8.111}{9}\right)^{111}\)

\(\frac{888}{9}>1\Rightarrow\left(\frac{888}{9}\right)^{111}>1\Rightarrow222^{333}>333^{222}\)

30 tháng 9 2016

a) Ta có: 3^150 = 3^2.75 = (3^2)^75 = 9^75

2^225 = 2^3.75 = (2^3)^75 = 8^75

Vì 9 > 8 nên 9^75 > 8^75

Vậy 3^150 > 2^225

b) Ta có: 2016^20 = 2016^10+10 = 2016^10 . 2016^10

20162016^10 = (10001 . 2016)^10 = 10001^10 . 2016^10

Vì 2016^10 < 10001^10 nên 2016^10 . 2016^10 < 10001^10 . 2016^10

Vậy 2016^20 < 20162016^10

19 tháng 9 2015

\(333^{333}=3^{333}.111^{333}\)

\(555^{222}=5^{222}.111^2\)

\(3^{333}=27^{111}>5^{222}=25^{111}\) (1)

\(111^{333}>111^{222}\)(2)

Từ (1) và (2) \(\rightarrow333^{333}>555^{222}\)