Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
Bài 1: Tính nhanh:
A = 3/1*2 + 3/2*3 + 3/3*4 + ... + 3/399*400
=>3A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/399*400
3A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/399 - 1/400
3A = 1 - 1/400
3A = 400/400 - 1/400
3A = 399/400
A = 399/400 : 3
A = 399/400 . 1/3
A = 133/400.
Có gì ko hiểu bn ib mk nha.^^
\(A=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{399.400}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(A=3.\left(1-\frac{1}{400}\right)\)
\(A=3.\frac{399}{400}\)
\(A=\frac{1197}{400}\)
\(B=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{399.400}\)
\(B=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(B=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(B=5.\left(1-\frac{1}{400}\right)\)
\(B=5.\frac{399}{400}\)
\(B=\frac{399}{80}\)
\(C=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\)
\(C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\)
\(C=\frac{1}{5}-\frac{1}{151}\)
\(C=\frac{146}{755}\)
\(D=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{149.151}\)
\(D=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\frac{146}{755}\)
\(D=\frac{219}{755}\)
\(E=\frac{11}{1.3}+\frac{11}{3.5}+\frac{11}{5.7}+...+\frac{11}{99.101}\)
\(E=\frac{11}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\frac{100}{101}\)
\(E=\frac{550}{101}\)
_Chúc bạn học tốt_
Mai Anh tính sai rồi nha bạn dù kết quả của bạn vẫn đúng nha
27^150 = (3^3)^150 = 3^450
9^226= (3^2)^226 = 3^452
Mà 3^452 > 3^450 suy ra 9^226 > 27^150
Ta có :
\(\frac{33}{98}=\frac{33.25}{98.25}=\frac{825}{2450}\)
\(\frac{16}{50}=\frac{16.49}{50.49}=\frac{784}{2450}\)
Vì \(825>784\)nên \(\frac{825}{2450}>\frac{784}{2450}\)hay \(\frac{33}{98}>\frac{16}{50}\)
~ Hok tốt ~
Giải :
Ta thấy : 1/11>1/20 ; 1/12>1/20 ; 1/13>1/20 ; ..... ; 1/19>1/20 ; 1/20=1/20
Vậy:
(1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20) > 1/20 x 10 = 10/20
Vậy S > 1/2
vì 1/11+1/12+1/13+...+1/20<1/2+1/2+1/2+...+1/2
mà 1/2=1/2+1/2+...+1/2<1/2
Từ 2 điều trên =>1/11+1/12+1/13+...+1/20=S<1/2
\(5^{40}=\left(5^4\right)^{10}=625^{10}\)
Mà \(625^{10}>620^{10}\Rightarrow5^{40}>620^{10}\)
Vậy 540 > 62010 ( đpcm )
Ta có :
\(5^{40}=\left(5^4\right)^{10}=625^{10}\)
Vì \(625>620\Rightarrow625^{10}>620^{10}\)
Hay \(5^{40}>620^{10}\)
Vậy \(5^{40}>620^{10}\)
_Chúc bạn học tốt_
Cho S= 1/3 +2/3^2+3/3^3+..+100/3^100 So sánh 5^2019 và 5^2020
Hiện tại mình đang cần gấp giúp mk nha!
\(5^{2019}< 5^{2020}\)
vì
2020>2019
=>\(5^{2019}< 5^{2020}\)
a,
A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99
=1−(3+5+7+...+99)=1−(3+5+7+...+99)
=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498
b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98
c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99
Có 5149=599+50=599 x 550
mà 599 > 1199
=> 5149 > 1199
k hộ mik nha!
Hình như bạn sai. 5^99<11^99 mà.