Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu bài nó như thế chứ không có sai đâu cậu ạ! mk cũng đang hỏi câu này nè
Xét A trước ta có
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)ta có \(2005.A=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)\(2005A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005.A=1+\frac{2004}{2005^{2006}+1}\)
Xét B ta có
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)ta có \(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(2005B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005B=1+\frac{2004}{2005^{2005}+1}\)
ta có vì 2005A<2005B
từ đó suy ra A<B
nhớ **** đó
Bài giải
A = 2005^2005 +1/ 2005^2006 + 1
suy ra ta có : 2005A = 2005^2006 + 2005 / 2005^2006 +1 = 1 +2004 / 2005^2006 + 1
B = 2005 ^ 2004 +1 / 2005 ^ 2005 +1
suy ra ta có : 2005B = 2005^2005 + 2005 / 2005^2005 +1 =1 + 2004 / 2005 ^2005 + 1
Vì 2004/2005^2006 +1 < 2004/ 2005^2005 + 1 suy ra 2005A < 2005B nên A < B
vậy A <B
Ta có :
\(A=\frac{2006^{2006}+1}{2006^{2007}+1}< \frac{2006^{2006}+2005+1}{2006^{2007}+2005+1}=\frac{2006^{2006}+2006}{2006^{2007}+2006}=\frac{2006.\left(2006^{2005}+1\right)}{2006.\left(2006^{2006}+1\right)}\)
\(=\frac{2006^{2005}+1}{2006^{2006}+1}=B\)
\(\Rightarrow A< B\)
a ) Ta có : \(9^{20}\)= \(\left(3^2\right)^{10}\)= \(3^{20}\)
\(27^{13}\)= \(\left(3^3\right)^{13}\)= \(3^{39}\)
Vì 39 > 20 => 9^ 20 < 27 ^ 13
Phần b bạn vào câu hỏi tương tự. Nhớ tích đúng cho tớ