K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Ta có :

\(\frac{11}{15}=\frac{11\times14}{15\times14}=\frac{154}{210}\);

\(\frac{13}{14}=\frac{13\times15}{14\times15}=\frac{195}{210}\)

Vì : \(\frac{154}{210}< \frac{195}{210}\)nên \(\frac{11}{15}< \frac{13}{14}\)

28 tháng 2 2017

Ta có :

  \(\frac{11}{15}=\frac{11\times14}{15\times14}=\frac{154}{210}\)       \(\frac{13}{14}=\frac{13\times15}{14\times15}=\frac{195}{210}\)

Ta thấy \(154< 195\)

=> \(\frac{11}{15}< \frac{13}{14}\)

22 tháng 2 2020

Đặt \(A=\frac{2^{15}+1}{2^{16}+1}\)

\(\Rightarrow2A=\frac{2^{16}+2}{2^{16}+1}=\frac{2^{16}+1+1}{2^{16}+1}=1+\frac{1}{2^{16}+1}\)

Đặt \(B=\frac{2^{14}+1}{2^{15}+1}\)

\(\Rightarrow2B=\frac{2^{15}+2}{2^{15}+1}=\frac{2^{15}+1+1}{2^{15}+1}=1+\frac{1}{2^{15}+1}\)

Vì 216+1>215+1

\(\Rightarrow\frac{1}{2^{16}+1}< \frac{1}{2^{15}+1}\)

\(\Rightarrow1+\frac{1}{2^{16}+1}< 1+\frac{1}{2^{15}+1}\)

\(\Rightarrow2A< 2B\Rightarrow A< B\)

Vậy...

22 tháng 2 2020

\(A=\frac{2^{15}+1}{2^{16}+1}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2^{16}+1}\)

\(B=\frac{2^{14}+1}{2^{15}+1}\)

\(\Leftrightarrow2B=1+\frac{1}{2^{15}+1}\)

Nhận thấy : \(1+\frac{1}{2^{16}+1}< 1+\frac{1}{2^{15}+1}\Leftrightarrow2A< 2B\Leftrightarrow A< B\)

23 tháng 6 2018

trả lời giúp mình nha! mình sẽ cho  ^^

23 tháng 6 2018

11/14   12/13     15/15    33/32    34/31

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

17 tháng 8 2017

Ta có:

\(A=\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\frac{10^{16}+10}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

Ta so sánh \(10A\) và \(10B\)

Có: 

\(10A:\) Mẫu - tử = 9

\(10B:\) Mẫu - tử = 9

Lại có:

 \(\frac{10^{16}+10}{10^{16}+1}\) \(-1\)\(=\frac{9}{10^{16}+1}\)

\(\frac{10^{17}+10}{10^{17}+1}-1=\frac{9}{10^{17}+1}\)

Vì \(\frac{9}{10^{16}+1}\)\(>\frac{9}{10^{17}+1}\)nên \(10A>10B\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

17 tháng 8 2017

Theo bải ra ta có:

A=\(\frac{10^{15}+1}{10^{16}+1}\)=> 10A =.\(\frac{10.\left(10^{15}+1\right)}{10^{16}+1}\)\(\frac{10.10^{15}+1.10}{10^{16}+1}\)

                                      = \(\frac{10.10^{15}+10}{10^{16}+1}\)=\(\frac{10^{16}+1+9}{10^{16}+1}\)\(1+\frac{9}{10^{16}+1}\)

B= \(\frac{10^{16}+1}{10^{17}+1}\)=> 10B = \(\frac{10.\left(10^{16}+1\right)}{10^{17}+1}\)=\(\frac{10.10^{16}+1.10}{10^{17}+1}\)

                                       = \(\frac{10.10^{16}+10}{10^{17}+1}\)\(\frac{10^{17}+1+9}{10^{17}+1}\)\(1+\frac{9}{10^{17}+1}\)

Vì 1=1 mà \(\frac{9}{10^{16}+1}\)>   \(\frac{9}{10^{17}+1}\)nên => 10A > 10B => A>B

Vậy A>B.

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

9 tháng 3 2020

Bài 1 :

Đặt \(A=\frac{11^{13}+1}{11^{14}+1}\) và \(B=\frac{11^{14}+1}{11^{15}+1}\)

Có : \(A=\frac{11^{13}+1}{11^{14}+1}\)

\(\Rightarrow11A=\frac{11^{14}+11}{11^{14}+1}=\frac{11^{14}+1+10}{11^{14}+1}=1+\frac{10}{11^{14}+1}\)

Lại có : \(B=\frac{11^{14}+1}{11^{15}+1}\)

\(\Rightarrow11B=\frac{11^{15}+11}{11^{15}+1}=\frac{11^{15}+1+10}{11^{15}+1}=1+\frac{10}{11^{15}+1}\)

Vì 1114+1<1115+1

\(\Rightarrow\frac{10}{11^{14}+1}>\frac{10}{11^{15}+1}\Rightarrow1+\frac{10}{11^{14}+1}>1+\frac{10}{11^{15}+1}\Rightarrow11A>11B\Rightarrow A>B\)

Vậy A>B.

9 tháng 3 2020

Bài 2 :

a) Gọi (n+1,2n+3) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (n+1,2n+3) là 1

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản(đpcm)

b) Gọi (12n+1,30n+2) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (12n+1,30n+2) là 1

\(\Rightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản(đpcm)

c và d tương tự

4 tháng 4 2019

a) Ta có:

\(\frac{3}{14}=\frac{15}{70}\)

\(\frac{5}{16}=\frac{15}{48}\)

Vì \(48< 70\)

\(\Rightarrow\frac{15}{48}>\frac{15}{70}\)

\(\Rightarrow\frac{5}{16}>\frac{3}{14}\)

b) Vì \(11< 12\)

\(\Rightarrow\frac{7}{11}>\frac{7}{12}\)

4 tháng 4 2019

a) \(\frac{34}{13}=2\frac{8}{13}\)

Vì 2 > 1 nên \(2\frac{8}{13}>1\frac{7}{9}\)

hay \(\frac{34}{13}>1\frac{7}{9}\)

b) \(\frac{7}{9}=1-\frac{2}{9}\)

\(\frac{13}{15}=1-\frac{2}{15}\)

Vì \(\frac{2}{9}>\frac{2}{15}\) nên \(\frac{7}{9}< \frac{13}{15}\)

4 tháng 4 2019

a) Ta có:

\(1\frac{7}{9}=\frac{16}{9}=\frac{208}{117}\) 

\(\frac{34}{13}=\frac{306}{117}\)

Vì \(306>208\)

\(\Rightarrow\frac{306}{117}>\frac{208}{117}\)

\(\Rightarrow\frac{34}{13}>1\frac{7}{9}\)

b) Ta có:

\(\frac{7}{9}=\frac{35}{45}\)

\(\frac{13}{15}=\frac{39}{45}\)

Vì \(39>35\)

\(\Rightarrow\frac{39}{45}>\frac{35}{45}\)

\(\Rightarrow\frac{13}{15}>\frac{7}{9}\)