Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)
Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)
=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Bài làm :
Cách 1:
Ta có :
\(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cách 2 :
Nhận thấy :
- 29 < 39
- 32010 > 22010
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
a) 5200 = (52)100 = 25100
3453= 3400 x 353 = ( 34)100 x 353 = 81100 x 353
Ta thấy 81100 > 25100 => 81100 x 353 > 25100
Vậy 3453 > 5200
b) 2164= 2160 x 24 = (24)40 x24 = 1640 x 24
Ta thấy: 1640 > 1340 => 1640 x 24 > 1340
Vậy 2164 > 1340
Nhớ k mik nha
2^300 = (2³)^100 = 8^100
3^200 = (3²)^100 = 9^100
Vì 8 < 9 nên 8^100 < 9^100 =>2^300 < 3^200.
\(2^{300}=2^{3\times100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\times100}=\left(3^2\right)^{100}=9^{100}\)
vì 8^100< 9^100 nên 2^300<3^200
a) Ta có: \(3^{40}=\left(3^4\right)^{10}=81^{10}\)
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
Vì 125 > 81 => \(125^{10}>81^{10}\) => \(3^{40}>5^{30}\)
b) Ta có: \(5^{303}>5^4\) vì 303 > 4
Mà: \(5^4>2^4\) vì 5 > 2
=> \(5^{303}>2^4\)
\(2^x=4^3=\left(2^2\right)^3=2^6\Rightarrow x=6.\)
Ta có: 2603=(23)201=8201; 3402=(32)201=9201
Vì 8<9 nên 2603<3402