Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\begin{array}{l}cosx{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow cosx{\rm{ }} = {\rm{ cos}}\frac{\pi }{2}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k\pi ;k \in Z\end{array}\)
Mà \(x \in \left[ {0;10\pi } \right]\) nên
\(\begin{array}{l}0 \le \frac{\pi }{2} + k\pi \le 10\pi \\ \Rightarrow - 0,5 \le k \le 9,5\end{array}\)
Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\)
Vậy phương trình đã cho có số nghiệm là 10.
Chọn C
\(0< \dfrac{1}{2018}< 1\)
Kẻ 1 đường thẳng nằm ngang nằm giữa \(y=0\) và \(y=1\) ta thấy cắt đồ thị tại 5 điểm trên đoạn đã cho
\(\Rightarrow\) Pt có 5 nghiệm
a) Vẽ đồ thị:
\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm
b) Vẽ đồ thị:
\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm
Ta có
\(\begin{array}{l}\sin x{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow \sin x{\rm{ }} = {\rm{ sin 0}}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}k\pi ;k \in Z\end{array}\)
Mà \(x \in \left[ {0;10\pi } \right]\) nên
\(\begin{array}{l}0 \le k\pi \le 10\pi \\ \Rightarrow 0 \le k \le 10\end{array}\)
Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\)
Vậy phương trình đã cho có số nghiệm là 11.
Chọn D