Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác BAH có ∠(BAH) + ∠(AHB) + ∠(ABH) = 180o
⇒∠(BAH) = 180o - 90o - 50o = 40o
Chọn A
Trong tam giác BAH có ∠(BAH) + ∠(AHB) + ∠(ABH) = 180o
⇒∠(BAH) = 180o - 90o - 50o = 40o
Chọn A
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
BẠn viết nhầm rồi phải là P,M,N tỉ lệ 2,3,4
Giải
Theo bài ra ta có : \(\frac{P}{2}=\frac{M}{3}=\frac{N}{4}\) Và P + M +N =180(độ) (theo Đl tổng ba góc tam giác)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{p}{2}=\frac{M}{3}=\frac{N}{4}=\frac{P+M+N}{2+3+4}=\frac{180}{9}=20\)
=> P = 20.20 = 40 độ
Tam giac ABC = MNP => P = C = 40(độ)
*****************L ike nha *************thanks****************
Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) và \(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\)
\(\widehat{B}=12^o.5=60^o\)
\(\widehat{C}=12^o.7=84^o\)
nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)
vậy : A = 3 . 12 = 36
B = 5 . 12 = 60
C = 7 . 12 = 84
=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)
Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)
Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)
Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)
Áp dụng t/c dtsbn:
\(\dfrac{\widehat{A}}{5}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{5+2+3}=\dfrac{180^0}{10}=18^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{B}=36^0\\\widehat{C}=54^0\end{matrix}\right.\)
Do đó tg ABC vuông tại A
Xét tg AHB vuông tại H có \(\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=90^0-36^0=54^0\)
Gọi số đo ba góc A, B, C lần lượt là: x, y, z
Theo đề ta có: x/5 = y/2 = z/3, x + y + z= 180 độ
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/5 + y/2 + z/3 = (x+y+z)/(5+2+3)= 180/10=18
=> y/2=18=>y=18.2=36
Vì H là đường cao của tam giác ABC nên góc BHA=90 độ
Ta lại có: góc B + góc BAH + góc BHA= 180 độ
hay 36 độ + 90 độ + góc BHA= 180 độ
=> 126 độ + góc BHA= 180 độ
=> góc BHA= 180 độ - 126 độ = 54 độ
Vậy góc BHA có số đo là 54 độ