K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

(2x - 3)2 + |y| = 1

\(\Rightarrow\left(2x-3\right)\le1\)

Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)

nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)

Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)

22 tháng 11 2016

2 cặp

11 tháng 12 2017

vì ( x - 2014 )2014 \(\ge\)\(\forall\)x

( y - 2015 )2014 \(\ge\)\(\forall\)y

\(\Rightarrow\)( x - 2014 )2014 + ( y - 2015 )2014 \(\ge\)\(\forall\)x,y

Mà ( x - 2014 )2014 + ( y - 2015 )2014 = 0 

\(\Rightarrow\)\(\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2014}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}\)

Vậy ( x ; y ) = ( 2014 ; 2015 )

11 tháng 12 2017

Vì (x-2014)2014 \(\ge\) 0

(y-2015)2014 \(\ge\)0

=> (x-2014)2014 + (y-2015)2014 \(\ge\) 0

Mà (x-2014)2014 + (y-2015)2014  = 0

=> \(\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2015}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2014=0\\y-2015=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}}}\)

15 tháng 3 2017

Chỉ có 2 cặp thui
x=2015 thì y=5
x=2017 thì y=1

15 tháng 1 2020

Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath