Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(3(\sin x+\cos x)-(\sin x+\cos x)^3=(\sin x+\cos x)[3-(\sin x+\cos x)^2]\)
\(=(\sin x+\cos x)[3-(\sin ^2x+\cos ^2x)-2\sin x\cos x]\)
\(=(\sin x+\cos x)(3-1-2\sin x\cos x)=2(\sin x+\cos x)(1-\sin x\cos x)=2(\sin x+\cos x)(\sin ^2x+\cos ^2x-\sin x\cos x)\)
\(=2(\sin ^3+\cos ^3x)\)
\(\Rightarrow \frac{3(\sin x+\cos x)-(\sin x+\cos x)^3}{2}=\sin ^3x+\cos ^3x\)(đpcm)
\(\Leftrightarrow4\left(sin^3x+cos^3x\right)-6sinx.cosx-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow4\left(sinx+cosx\right)^3-12sinx.cosx\left(sinx+cosx\right)-6sinx.cosx-4\left(sinx+cosx\right)=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(4t^3-6t\left(t^2-1\right)-3\left(t^2-1\right)-4t=0\)
\(\Leftrightarrow-2t^3-3t^2+2t+3=0\)
\(\Leftrightarrow\left(t^2-1\right)\left(2t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2=1\\t=-\frac{3}{2}\left(l\right)\\\end{matrix}\right.\) \(\Rightarrow\left(sinx+cosx\right)^2=1\)
\(\Leftrightarrow2sinx.cosx=0\Leftrightarrow sin2x=0\)
\(\Rightarrow x=\frac{k\pi}{2}\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3-6sinx.cosx\left(sinx+cosx\right)+2sinx.cosx\left(sinx+cosx\right)=\sqrt{2}\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3-4sinx.cosx\left(sinx+cosx\right)=\sqrt{2}\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
\(\Rightarrow2t^3-2t\left(t^2-1\right)=\sqrt{2}\)
\(\Leftrightarrow2t=\sqrt{2}\Leftrightarrow t=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x=...\)
d/
\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)
\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)
c/
\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)
\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Lời giải:
PT $\Leftrightarrow (\sin x+\cos x)(\sin ^2x-\sin x\cos x+\cos ^2x)-(\sin x+\cos x)=0$
$\Leftrightarrow (\sin x+\cos x)(\sin ^2x-\sin x\cos x+\cos ^2x-1)=0$
$\Leftrightarrow -\sin x\cos x(\sin x+\cos x)=0$
$\Leftrightarrow \sin x=0$ hoặc $\cos x=0$ hoặc $\sin x+\cos x=0$
Với $\sin x=0$ thì $x=k\pi$ với $k$ nguyên
Với $\cos x=0$ thì $x=\frac{\pi}{2}+k\pi$ với $k$ nguyên
Với $\sin x+\cos x=0$
$\Rightarrow (\sin x, \cos x)=(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})$ và hoán vị
$\Rightarrow x=\frac{-\pi}{4}+k\pi$ với $k$ nguyên.
\(\Leftrightarrow sin\left(3x+45^0\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=-x+k360^0\\3x+45^0=180^0+x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=45^0+k360^0\\2x=135^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=22,5^0+k90^0\\x=67,5^0+k180^0\end{matrix}\right.\) (\(k\in Z\))