Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
a , \(A=\frac{19^{30}+1}{19^{31}+1}\Rightarrow19A=\frac{19^{31}+19}{19^{31}+1}=\frac{19^{31}+1+18}{19^{31}+1}=1+\frac{18}{19^{31}+1}\)
\(B=\frac{19^{31}+1}{19^{32}+1}\Rightarrow19B=\frac{19^{32}+19}{19^{32}+1}=\frac{19^{32}+1+18}{19^{32}+1}=1+\frac{18}{19^{32}+1}\)
Vì \(19A< 19B\Leftrightarrow A< B\)
b, câu b tương tự nha
Ta có : \(\frac{2}{3}+\frac{-1}{5}=\frac{10+(-3)}{15}=\frac{7}{15}\)
Quy đồng : \(\frac{3}{5}=\frac{3\cdot3}{5\cdot3}=\frac{9}{15}\)
Mà \(\frac{9}{15}>\frac{7}{15}\)
\(\Rightarrow\frac{3}{5}>\frac{2}{3}+\frac{-1}{5}\)
P/S : Rõ ràng đây
Ta có:
\(\frac{2}{3}+\frac{-1}{5}=\frac{7}{15}\)
Vì \(\frac{3}{5}>\frac{7}{15}\)nên \(\frac{3}{5}>\frac{2}{3}+\frac{-1}{5}\)
Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B
\(19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Ta thấy \(19A>19B\) nên A > B
Ta có \(A=\frac{19^{30}+5}{19^{31}+5}\)
Suy ra \(19A=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
Ta có \(B=\frac{19^{31}+5}{19^{32}+5}\)
Suy ra \(19B=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(19^{31}+5< 19^{32}+5\Rightarrow\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Do đó \(19A>19B\Rightarrow A>B\)
Vậy A > B