Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(S=2^1+2^2+...+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2^1\cdot15+...+2^{97}\cdot15\)
\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)
c)\(S=2^1+2^2+...+2^{100}\)
\(2S=2\left(2^1+2^2+...+2^{100}\right)\)
\(2S=2^2+2^3+...+2^{101}\)
\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(S=2^{101}-2\)
S=21+22+23+...+2100
a) S=21+22+23+...+2100
=(21+22)+(23+24)+...+(299+2100)
=2(1+2)+22(1+2)+...+298(1+2)
=2.3+22.3+...298.3
Vì mỗi thừa số trong S chia hết cho 3=> S chia hết cho 3
a, \(S="2+2^2"+"2^3+2^4"+....+"2^{99}+2^{100}"\)
\(S=6+2^2."2+2^2"+2^{98}."2+2^2"\)chia hết cho 6
b, tương tự
c, S chia hết cho 5 vì chia hết cho 15
S cũng chia hết cho 2 và 5 mọi số hạng của S đều chi hết cho 2
Suy ra S chia hết cho 2 và 5
Suy ra S có tận cùng là 10
P/s: Phần a bn thay dấu ngoặc kép thành ngoặc đơn nhé
a)
\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)
b)
Tính S:
\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.
c)
Ta có \(S=\frac{3^{2017}-3}{2}\)
\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)
Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0
\(S=3+3^2+3^3+3^4+...+3^{2016}\)
\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2017}-3\)
\(S=\frac{3^{2017}-3}{2}\)
Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)
Vậy 2S + 3 là một lũy thừa của 3 (đpcm)
a)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=1\cdot13+...+3^9\cdot13\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
b)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=1\cdot40+...+3^8\cdot40\)
\(=40\cdot\left(1+...+3^8\right)⋮40\)
c)\(S=1+3+...+3^{11}\)
\(3S=3\left(1+3+...+3^{11}\right)\)
\(3S=3+3^2+...+3^{12}\)
\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)
\(2S=3^{12}-1\)
\(S=\frac{3^{12}-1}{2}\)
s=2+2^2+2^3+.....+2^100
s=2.(1+2+2^2+2^3)+......+2^97.(1+2+2^2+2^3)
s=2.15+....+2^97.15
s=15.(2+....+2^97)
=> s chia het cho 15
a=3+3^2+3^3+....+3^20
a=3.(1+3)+......+3^19.(1+3)
a=3.4+.....+3^19.4
a=4.(3+.....+3^19)
vay a chia het cho 4
bài này mình làm được nhưng hơi dài lên mất khoảng 2 đến 3 phút bạn đợi mình được không ?