Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=21+22+23+...+2100
a) S=21+22+23+...+2100
=(21+22)+(23+24)+...+(299+2100)
=2(1+2)+22(1+2)+...+298(1+2)
=2.3+22.3+...298.3
Vì mỗi thừa số trong S chia hết cho 3=> S chia hết cho 3
a, \(S="2+2^2"+"2^3+2^4"+....+"2^{99}+2^{100}"\)
\(S=6+2^2."2+2^2"+2^{98}."2+2^2"\)chia hết cho 6
b, tương tự
c, S chia hết cho 5 vì chia hết cho 15
S cũng chia hết cho 2 và 5 mọi số hạng của S đều chi hết cho 2
Suy ra S chia hết cho 2 và 5
Suy ra S có tận cùng là 10
P/s: Phần a bn thay dấu ngoặc kép thành ngoặc đơn nhé
S=2+22+23+...+2100
S=(2+22+23+24)+...+(297+298+299+2100)
S=2x(1+2+22+23)+...+297x(1+2+22+23)
S=2x15+...+297x15
S=15x(2+...+297)
Vậy S\(⋮\)15
S=2+22+23+...+2100
=>2S=22+23+...+2101
=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)
=>S=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của S là 4
a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6
b) Tương tự a
c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0
Nhớ ticks đúng cho mình nhé
a) S = 2 + 22 + 23 + 24 + .... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )
= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )
= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )
= 6 + 22 . 6 + .... + 298 . 6
= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )
a) Ta có:
S=51+52+53+...+596 gồm 96 số hạng
=(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)
=(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)
=19530+56.19530+...+585.19530
=19530.(1+55+...+585)
Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)
b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)
S = 1 + 2 + 22 + 23 + ... + 2100
2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)
2S = 2 + 22 + 23 + 24 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )
1S = 2101 - 1
S = 2101 - 1
Vậy S = 2101 - 1
Học tốt!!!
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
a)\(S=2^1+2^2+...+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2^1\cdot15+...+2^{97}\cdot15\)
\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)
c)\(S=2^1+2^2+...+2^{100}\)
\(2S=2\left(2^1+2^2+...+2^{100}\right)\)
\(2S=2^2+2^3+...+2^{101}\)
\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(S=2^{101}-2\)