K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

a)\(S=2^1+2^2+...+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2^1\cdot15+...+2^{97}\cdot15\)

\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)

24 tháng 10 2016

c)\(S=2^1+2^2+...+2^{100}\)

\(2S=2\left(2^1+2^2+...+2^{100}\right)\)

\(2S=2^2+2^3+...+2^{101}\)

\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(S=2^{101}-2\)

24 tháng 9 2017

S=21+22+23+...+2100

a) S=21+22+23+...+2100

        =(21+22)+(23+24)+...+(299+2100)

      =2(1+2)+22(1+2)+...+298(1+2)

      =2.3+22.3+...298.3

Vì mỗi thừa số trong S chia hết cho 3=> S chia hết cho 3

    

24 tháng 9 2017

a, \(S="2+2^2"+"2^3+2^4"+....+"2^{99}+2^{100}"\)

\(S=6+2^2."2+2^2"+2^{98}."2+2^2"\)chia hết cho 6

b, tương tự

c, S chia hết cho 5 vì chia hết cho 15

S cũng chia hết cho 2 và 5 mọi số hạng của S đều chi hết cho 2

Suy ra S chia hết cho 2 và 5

Suy ra S có tận cùng là 10

P/s: Phần a bn thay dấu ngoặc kép thành ngoặc đơn nhé

10 tháng 12 2017

S=2+22+23+...+2100

S=(2+22+23+24)+...+(297+298+299+2100)

S=2x(1+2+22+23)+...+297x(1+2+22+23)

S=2x15+...+297x15

S=15x(2+...+297)

Vậy S\(⋮\)15

S=2+22+23+...+2100

=>2S=22+23+...+2101

=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)

=>S=2101-2=225x4-2=...6-2=...4

Vậy chữ số tận cùng của S là 4

4 tháng 8 2015

a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6 

b) Tương tự a 

c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0 

Nhớ ticks đúng cho mình nhé

 

 

4 tháng 8 2015

a) S = 2 + 22 + 23 + 24 + .... + 2100

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )

= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )

= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )

= 6 + 22 . 6 + .... + 298 . 6

= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )

8 tháng 1 2019

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

21 tháng 10 2020

S = 1 + 2 + 22 + 23 + ... + 2100 

2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)

2S = 2 + 22 + 23 + 24 + ... + 2101 

2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )

1S = 2101 - 1

S = 2101 - 1

Vậy S = 2101 - 1

Học tốt!!!

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15