K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

S=1/4+1/8+1/16+1/32+1/64+1/128

\(S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)

\(2S=2\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

\(2S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)

\(2S-S=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

\(S=\frac{1}{2}-\frac{1}{2^7}\)

14 tháng 7 2016

S=(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)

S=1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128

S=1/2-(1/4-1/4)+(1/8-1/8)+(1/16-1/16)+(1/32-1/32)+(1/64-1/64)-1/128

S=1/2-1/128

S=63/128

22 tháng 6 2016

Đặt A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(2A-A=1-\frac{1}{128}\)

\(A=\frac{127}{128}\)

22 tháng 6 2016

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=\frac{127}{128}\)

16 tháng 8 2016

giúp mình với

=127/128

neu dung thi tck nha

25 tháng 7 2018

1/2+1/4+1/8+1/16+1/32+1/64+1/128

=64/128+32/128+16/128+8/126+4/126+2/126+1/128

=64+32+16+8+4+2+1/128

=123/128

25 tháng 7 2018

C=1/2+1/4+1/8+1/16+1/32+1/64+1/128

C=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128

C=1-1/128

C=127/128

5 tháng 7 2021

Có : 

A = \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

\(\Rightarrow2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{256}\)

\(A=\frac{128}{256}-\frac{1}{256}=\frac{127}{256}\)

2 tháng 4 2020

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{512}-\frac{1}{1024}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^9}-\frac{1}{2^{10}}\)

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^8}-\frac{1}{2^9}\)

\(3A=1-\frac{1}{2^{10}}< 1\)

\(\Rightarrow A< \frac{1}{3}\)

1 tháng 7 2015

Câu a:Đáp số 127/128

Câu b:Đáp số 1021/63

1 tháng 7 2015

a) Đặt A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 
2A= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256) 
     = 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 
=>A =  2A-A =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256 
=1-1/256 
=255/256

b) = 18 - (19/21 + 8/9) = 18 - 113/63 = 1021/63

26 tháng 5 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(\frac{127}{128}\)

26 tháng 5 2018

127/128

6 tháng 7 2019

#)Giải :

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

Lời giải 

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)